
IMPROVEMENTS OF LINEARIZATION-BASED

ALGEBRAIC ATTACKS ON BLOCK CIPHERS

Satrajit Ghosh

IMPROVEMENTS OF LINEARIZATION-BASED

ALGEBRAIC ATTACKS ON BLOCK CIPHERS

Thesis submitted in partial fulfillment
of the requirements for the award of the degree

of

Master of Science

by

Satrajit Ghosh

Under the supervision of

Dr. Abhijit Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

August 2012

c© 2012 Satrajit Ghosh. All Rights Reserved.

APPROVAL OF THE VIVA-VOCE BOARD

Certified that the thesis entitled “Improvements of Linearization-based
Algebraic Attacks on Block Ciphers” submitted by Satrajit Ghosh
to the Indian Institute of Technology, Kharagpur, for the award of the
degree of Master of Science has been accepted by the external examiners
and that the student has successfully defended the thesis in the viva-voce
examination held today.

(Member of the DAC) (Member of the DAC) (Member of the DAC)

(Supervisor)

(External Examiner) (Chairman)

Date:

CERTIFICATE

This is to certify that the thesis entitled “Improvements of
Linearization-based Algebraic Attacks on Block Ciphers”,
submitted by Satrajit Ghosh to the Indian Institute of Technology,
Kharagpur, is a record of bona fide research work carried out by him
under my supervision and guidance. The thesis in my opinion, is worthy
of consideration for the award of the degree of Master of Science of the
Institute. To the best of my knowledge, the results embodied in this
thesis have not been submitted to any other University or Institute for
the award of any other Degree or Diploma.

Dr. Abhijit Das
Associate Professor
CSE, IIT Kharagpur

Date:

DECLARATION

I certify that

(a) The work contained in the thesis is original and has been done by
myself under the general supervision of my supervisors.

(b) The work has not been submitted to any other Institute for any
degree or diploma.

(c) I have followed the guidelines provided by the Institute in writing
the thesis.

(d) I have conformed to the norms and guidelines given in the Ethical
Code of Conduct of the Institute.

(e) Whenever I have used materials (data, theoretical analysis, and
text) from other sources, I have given due credit to them by
citing them in the text of the thesis and giving their details in the
references.

(f) Whenever I have quoted written materials from other sources, I have
put them under quotation marks and given due credit to the sources
by citing them and giving required details in the references.

Satrajit Ghosh

ACKNOWLEDGEMENTS

If I start to thank all the numerous people who have been there for
help and support whenever I needed it in the course of this project, the
acknowledgement section might surpass all the remaining sections of this
thesis. But anyway, let me take this opportunity to mention some of them
who have really been instrumental in making this thesis possible.

To start with, I would like to express my appreciation to my advisor,
Dr. Abhijit Das, for his guidance and encouragement. I offer my sincere
gratitude to my supervisor for giving me such a challenging and interesting
field to work on. His intuitive and innovative ideas, guidance, support
and inspiration always encouraged me, and will continue to drive me,
to explore deeper. I am grateful to the members of my Departmental
Academic Committee (DAC) for their useful suggestions and insightful
comments about my work at various occasions. I would like to convey
my special thanks to Dr. Dipanwita Roy Chowdhury and Dr. Debdeep
Mukhopadhyay, for their inspiration and encouragement. I would also like
to thank all the staff and other faculty members of the Computer Science
and Engineering Department who have been helpful in many ways.

Next, I would like to thank all my friends and colleagues to make
this journey memorable. Specifically, I want to express my sincere thanks
to Anup, Binu, Souvik, Karati, Dhiman, Soumik, Bhombol, Somnath,
Pratyay, Sagnik, Joy Da, Sudakshina, Suprobhat, Jyotirmoy Da, Sudip
Da, Utsab, Sourav, Angshuman, Athar, Projit and all the mess members
in VSRC, to make my KGP life a story worth remembering. I want to
thank my very special friend Gunja to be there by my side all the time.

Finally, I wish to express my indebtedness to my family for their
support, sacrifice and understanding.

Satrajit Ghosh

ABSTRACT

Algebraic attacks are studied as a potential cryptanalytic procedure

for several cryptographic primitives. In an algebraic attack on a

cipher, one expresses the encryption function as a system (usually

overdefined) of multivariate polynomial equations in the bits of the

plaintext, the ciphertext and the key, and subsequently solves the

system for the unknown key bits from the knowledge of one or more

plaintext/ciphertext pairs. The systems of equations arising from ciphers

are typically multivariate polynomial equations over finite fields (usually,

GF (2)). Algebraic techniques have been practically applied for solving

systems available from some block ciphers, stream ciphers and public-key

cryptosystems. However, the general complexity of algebraic attacks is

poor—indeed poorer than exhaustive key search.

In 2000, eXtended Linearization (XL) was introduced as a tool for

solving systems of multivariate polynomial equations. The standard

XL algorithm expands the initial system of equations by monomial

multiplications. The expanded system is treated as a linear system in

the monomials. Linear-algebra techniques are then used to solve for the

monomials, and in particular, the unknown variables standing for the

key. However, for most block ciphers (including the Advanced Encryption

Standard (AES)), the monomial-multiplication phase yields linearized

systems, solving which demands more effort than exhaustive key search.

In this thesis, we first propose a heuristic strategy XL SGE to

reduce the count of linearized equations in the expanded system. This

reduction is achieved by decomposing the expansion stage of XL into

a sequence of variable-multiplication stages, and applying structured

Gaussian elimination (SGE) before each stage of variable multiplication.

This first proposal XL SGE suffers from some drawbacks that impair the

effectiveness of SGE-based reduction at all multiplication stages except

the first. In order to avoid this problem, we propose three improved

variants of XL SGE. XL SGE-2 uses a partial monomial-multiplication

strategy to curb the generation of linearized equations in a random

(but controlled) fashion. We also handle a variant of SGE in which

xiv

columns of weight two are eliminated without increasing the weight of

the coefficient matrix (we call this variant XL SGE′). In our third

modification XL SGE-3, we use intelligent strategies to identify and

remove many redundant equations before each variable-multiplication

stage. In short, the key contribution of this thesis is the proposal of using

SGE during the expansion phase of XL. (The subsequent linear-algebra

phase is naturally expected to exploit SGE, anyway.)

All of our modified algorithms have been experimentally verified to

be substantially superior to XL SGE. Experimentation on small random

systems indicates that the proposed XL SGE family has the potential to

significantly improve upon the performance of XL in terms of the size

of the final solvable system. We also experimented with a toy version

of AES, and noticed significant performance gains achieved by XL SGE

variants over XL. A theoretical analysis of the superiority of XL SGE over

XL continues to remain an open area of research.

Keywords: Block cipher, AES, multivariate polynomial equation,

algebraic attack, linearization, XL, sparse linear system, structured

Gaussian elimination.

Contents

Abstract xiii

Table of Contents xv

List of Tables xvii

1 Introduction 1

1.1 Overview and Motivation . 1

1.2 Contributions . 2

1.3 Thesis Organization . 3

2 Literature Survey 5

2.1 Algebraic Attack on AES-like Ciphers 5

2.1.1 Equation Generation . 6

2.1.2 Solve the System of Equations 11

2.2 A Survey on Algebraic Attacks 13

3 A Heuristic Improvement of XL 19

3.1 Background . 20

3.2 eXtended Linearization with Structured Gaussian Elimination

(XL SGE) . 21

3.2.1 Motivation . 21

3.2.2 XL SGE Algorithm . 22

3.3 An Evaluation of XL SGE over GF (2) 24

3.4 Experimental Results . 25

3.5 Conclusion . 29

4 Improvements of XL SGE 31

4.1 Introduction . 31

xv

xvi CONTENTS

4.2 Problem of XL SGE . 32

4.3 Improvements of XL SGE . 35

4.3.1 XL SGE with RandomMonomial Multiplication (XL SGE-2) 36

4.3.2 Column-weight Two Reduction 38

4.4 Experimental Results and Discussion 39

4.5 Conclusion . 45

5 XL SGE with Row Deletion 47

5.1 Introduction . 47

5.2 XL SGE with Row Deletion (XL SGE-3) 48

5.2.1 XL SGE-3 with Deterministic Deletion (XL SGE-3d) . . . 49

5.2.2 XL SGE-3 with Random Deletion (XL SGE-3r) 50

5.3 Experimental Results . 50

5.4 Conclusion . 51

6 Conclusion 55

6.1 Summary of Work Done . 55

6.2 Directions of Future Research . 56

Dissemination of Work 59

Bibliography 61

List of Tables

2.1 S-Box table lookup . 7

3.1 Comparison of XL with XL SGE (with K = 0) for random systems 26

3.2 Comparison of XL with XL SGE (with K ≥ 0) for random systems 28

3.3 Dependence of the performance of XL SGE on the parameter K . 28

3.4 Comparison of XL with XL SGE for baby Rijndael for D = 3 . . 29

4.1 Performance of XL SGE-2 . 39

4.2 Variation of the final system size in XL SGE-2 for some seed values 41

4.3 Performance of XL SGE-2 . 41

4.4 Comparison of performances of XL, XL SGE and XL SGE-2 . . . 43

4.5 Performance of XL SGE′ (XL SGE with column-weight 2 reduction) 44

4.6 Performances of XL and variants of XL SGE for four-round

baby-Rijndael (D = 3) . 45

5.1 Comparison of performances of XL, XL SGE and XL SGE-3d . . 51

5.2 Comparison of performances of XL, XL SGE and XL SGE-3r . . 52

5.3 Performances of XL and variants of XL SGE for random systems 52

5.4 Performances of XL and variants of XL SGE for four-round

baby-Rijndael (D = 3) . 52

xvii

Chapter 1

Introduction

The security of many cryptosystems is based on the difficulty of solving

large systems of nonlinear multivariate polynomial equations. In algebraic

cryptanalysis, we express the encryption transform of a cipher as an overdefined

system of multivariate polynomial equations in the bits of the plaintext, the

ciphertext and the key, and then solve that system for the key bits from some

known plaintext/ciphertext pairs. In this work we study linearization based

algebraic attacks on block ciphers and we have proposed some improved variants

of linearization based attack techniques.

In Section 1.1, the research problems along with their motivations are briefly

described. The main contributions of our work are summarized in Section 1.2.

The organization of the thesis is provided in Section 1.3.

1.1 Overview and Motivation

In principle, any cryptosystem can be modeled as a set of algebraic equations over

a finite field [1]. In fact the same cryptographic primitive can be expressed as

several algebraic systems. According to Claude Shannon,“breaking a good cipher

should require as much work as solving a system of simultaneous equations in

a large number of unknowns of a complex type” [2]. But in general, solving

such systems over finite fields is an NP-Complete problem. However, when the

1

2 Chapter 1 Introduction

multivariate system is overdefined, some reasonable algorithms are known, like

Gröbner-basis computation [3, 4], linearization [5, 6, 7, 8], and algorithms based

on SAT-solvers [9].

Many cryptosystems have been successfully cryptanalyzed by algebraic

attacks [10, 11, 12, 13, 14]. But in general, time and memory complexity of

these attacks are prohibitively high in case of block ciphers. Although algebraic

attacks against block cipher have received much attention since the proposal

in [7, 15] against Advanced Encryption Standard (AES) and Serpent, so far it

has limited success against modern block ciphers. The main problem of applying

algebraic attacks to the case of block ciphers is that the size of the final solvable

system becomes unmanageably huge. As a result, the attack complexity exceeds

the complexity of brute-force search. For example, Courtois and Pieprzyk [7]

estimate an effort of nearly 2230 bit operations to cryptanalyze 128-bit AES

using XSL, which exceeds the complexity of brute-force search (at most 2128

encryptions). Consequently, it is of important research concern to propose

practical improvements of known algorithms on algebraic attacks. To bring down

the complexity of algebraic attacks on block ciphers, one possibility is to reduce

the size of the final system so that the system can be generated and solved

efficiently. Since the linearized equations generated by XL are usually sparse,

special sparse system-solving algorithms may be exploited in the context of XL.

1.2 Contributions

To start with, we propose a new heuristic XL SGE to improve the performance of

the XL method [6] by reducing the size of the final linearized system. XL SGE

uses structured Gaussian elimination (SGE) [16] to reduce the growth of the

number of variables during the expansion stage of XL. It also helps by decreasing

the number of linearly dependent equations. SGE sometimes exhibits excessive

reduction in the system size (avalanche effect). XL SGE gets rid of this problem

by tuning a heuristic parameter. In short, the basic novelty of our work is the

application of sparse system-solving techniques in the expansion phase of the

standard XL algorithm.

1.3 Thesis Organization 3

In many cases, the reduction in the system size obtained by XL SGE is

not significant. We identify sources of inefficiency of XL SGE, and propose

some improvements to repair this problem. These improvements employ three

novel techniques. First, random monomial multiplications are used during the

multiplication stage of XL SGE. Second, variables with column weight two are

considered in the SGE stage of the algorithm. Finally, redundant equations are

deleted in a controlled manner. Experiments carried out on small systems and

toy ciphers indicate that our new heuristic ideas bring down the complexity of

XL substantially.

1.3 Thesis Organization

The rest of the dissertation is organized as follows.

• Chapter 2 provides the necessary background materials along with related

research works on algebraic attack.

• Chapter 3 describes our first proposal extended linearization with

structured Gaussian elimination (XL SGE).

• Chapter 4 identifies some problems in XL SGE and proposes improved

variants of XL SGE, namely XL SGE-2 and XL SGE′.

• Chapter 5 discusses another improved variant of XL SGE (XL SGE-3),

which uses intelligent row deletion strategy along with XL SGE.

• Chapter 6 summarizes the work done, and concludes the thesis after

mentioning some possible extensions of our work.

Chapter 2

Literature Survey

Algebraic attacks are very important techniques in the analysis of symmetric

primitives. These are very powerful methods that apply to both block ciphers and

stream ciphers (also in case of hash functions). The basic principle of algebraic

cryptanalysis is to express the whole cryptographic algorithm as a large system

of multivariate algebraic equations (typically over GF (2)), which can be solved

to recover the secret key. In this chapter, we are going to give an overall idea

of algebraic attack. In Section 2.1, we give a description about algebraic attack

on AES like block ciphers. That includes a description of equation generation

for a toy version of AES and a brief description of extended linearization (XL)

algorithm. It also includes an overview of structured Gaussian elimination

algorithm, which is important in order to understand our proposals in the next

chapters. In Section 2.2, we provide a brief survey on algebraic attacks.

2.1 Algebraic Attack on AES-like Ciphers

Block ciphers are an important building block of modern cryptography. In

August 2000, the block cipher Rijndael was selected as the Advanced Encryption

Standard (AES) [17]. Rijndael is a key-iterated block cipher with a very strong

algebraic structure. AES can be represented as algebraically closed equations

over GF (28) [7]. It can also be represented as a system of multivariate quadratic

equations over GF (2) with plain-text, cipher-text and key bits as variables. The

5

6 Chapter 2 Literature Survey

system of equations can be solved for the key-bit values, given a few known

plain-text/cipher-text pairs under a specific key.

The MQ problem is the problem of solving multivariate quadratic equations.

The MQ problem is NP-Hard in general [18]. Solving a system of quadratic

equations over any finite field is NP-Complete [19] (since over a finite field, one

can verify a correct solution in polynomial time). In general, no polynomial-time

algorithm is known to solve this problem. However, for overdefined systems of

multivariate quadratic equations (Number of equations ≫ Number of variables),

some reasonable algorithms are known [5, 6, 8, 20, 3, 4].

An algebraic attack consists of two basic steps:

• Equation Generation

• Solve the system of equations

2.1.1 Equation Generation

Every cryptosystem can be represented as a system of polynomial equations over

GF (2) with plain-text, cipher-text and key bits as variables. In general, a block

cipher consists of a linear part and a non-linear part. The non-linear part is due

to the presence of S-Boxes in the cipher. Constructing equations for the linear

part is trivial. To construct the equations for the non-linear part of the cipher,

we have used two different techniques. First, we use the structure of the S-Boxes

to generate equations. Second, we use the null-space equations for the S-Boxes.

For our experiments, we have used a scaled-down version of AES (baby Rijndael)

as described in [18].

Baby Rijndael Structure

Baby Rijndael is a scaled down version of AES with the same algebraic structure

as AES. The block size and the key size of baby Rijndael are 16 bits. Each block

and key can be represented by 4 hexadecimal digits as h0h1h2h3 and k0k1k2k3.

Baby Rijndael consists of several rounds with identical structure.

2.1 Algebraic Attack on AES-like Ciphers 7

The state is considered to be a 2× 2 array of hex digits. For the mix-column

operation, the state is considered to be an 8 × 2 array of bits. For converting

between the two, each hex digit is considered to be a column of 4 bits with

the high-order bit at the top. Initially, the input block h0h1h2h3 is loaded

into the state

(

h0 h2

h1 h3

)

, and the round keys are computed according to the

key-schedule algorithm. The encryption function of the 4-round baby Rijndael

can be described as:

E(a) = r4 ◦ r3 ◦ r2 ◦ r1(a⊕ k0).

Here, a denotes the state, k0,k1,k2,k3,k4 are the round keys, and

ri(a) = t(σ̂(S(a)))⊕ ki,

In r4, the mix-column operation t is omitted. Individual functions of the cipher

are described below.

• SubBytes: The S operation is a table lookup applied to each hex digit of

the state:
(

h0 h2

h1 h3

)

S7−→
(

s(h0) s(h2)

s(h1) s(h3)

)

,

where the s function is given in Table 2.1.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

s(x) a 4 3 b 8 e 2 c 5 7 6 f 0 1 9 d

Table 2.1: S-Box table lookup

• ShiftRows: The σ̂ operation swaps the entries in the second row of the

state.
(

h0 h2

h1 h3

)

σ̂7−→
(

h0 h2

h3 h1

)

• MixColumns: The matrix T is an 8×8 matrix of bits shown below. For the

mix-column transformation, the state is considered to be an 8 × 2 matrix

of bits. The state is multiplied by T on the left using matrix multiplication

modulo 2.

a
t7−→ T · a

8 Chapter 2 Literature Survey

T =



































1 0 1 0 0 0 1 1

1 1 0 1 0 0 0 1

1 1 1 0 1 0 0 0

0 1 0 1 0 1 1 1

0 0 1 1 1 0 1 0

0 0 0 1 1 1 0 1

1 0 0 0 1 1 1 0

0 1 1 1 0 1 0 1



































• KeySchedule: At the beginning of the cipher and at the end of each round,

the state is bit-wise added (mod 2) to the round key. The round keys are

2 × 2 arrays of hex digits similar to the state. The columns of the round

keys are defined recursively as follows:

ω0 =

(

k0

k1

)

, ω1 =

(

k2

k3

)

,

ω2i = ω2i−2 ⊕ S(reverse(ω2i−1))⊕ yi,

ω2i+1 = ω2i−1 ⊕ ω2i,

for i = 1, 2, 3, 4 and yi =

(

2i−1

0

)

. The reverse function interchanges the

two entries of a column. For i = 0, 1, 2, 3, 4, the round key ki is the matrix

whose columns are ω2i and ω2i+1.

Equation Generation from the Structure of Baby Rijndael

We have generated linear equations from the linear layer of baby Rijndael and

quadratic equations from the structure of the baby Rijndael S-Box.

• The S-Boxes: Baby Rijndael S-Box (like AES S-Box) consists of two main

layers.

1. Multiplicative inverse

In case of baby Rijndael, the input of the S-Box over GF (24) is

inverted modulo m(x), where m(x) is an irreducible polynomial

2.1 Algebraic Attack on AES-like Ciphers 9

defining GF (24). In our case, m(x) = x4 + x+1. In case of AES, the

input is over GF (28), and m(x) = x8 + x4 + x3 + x+ 1.

2. Affine Transformation

The inverted input passes through an affine transformation. In case

of baby Rijndael, the affine transformation is defined as s(x) =

b(x)g(x) + c(x), where g(x) is the inverse of the input of the S-Box,

b(x) = x3+x2+x, and c(x) = x3+x. The result is computed modulo

x4 + 1. The affine transformation can be represented in the form















s3

s2

s1

s0















=















0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0















×















g3

g2

g1

g0















⊕















0

1

0

1















,

where gi (for i = 0, 1, 2, 3) are the output of the multiplicative-inverse

layer, and si are the output of the S-Box.

Assume that the input bit variables of an S-Box of baby Rijndael are

a0, a1, a2, a3, and the output bit variables after the inverse layer of the

S-Box are b0, b1, b2, b3. Let f1 and f2 be the polynomial representations

of the input and the output of the inverse layer of the S-Box. From the

property of multiplicative inverse,

f1f2 − 1 = 0, (2.1)

where

f1 = a0 + a1x+ a2x
2 + a3x

3, ai ∈ GF (2), 0 ≤ i ≤ 3,

f2 = b0 + b1x+ b2x
2 + b3x

3, bi ∈ GF (2), 0 ≤ i ≤ 3.

Each multiplication is modulo m(x) = x4+x+1, and additions are bit-wise

over GF (2). Comparing coefficients of both sides of equation (2.1), we get

4 quadratic equations over GF (2):

b3a0 + b2a1 + b1a2 + b0a3 + b3a3 = 0,

b2a0 + b1a1 + b0a2 + b3a2 + b2a3 + b3a3 = 0,

b1a0 + b0a1 + b3a1 + b2a2 + b3a2 + b1a3 + b2a3 = 0,

b0a0 + b3a1 + b2a2 + b1a3 + 1 = 0.

10 Chapter 2 Literature Survey

There is a problem with the last equation, as 0−1 is defined as 0. In that

case, f1 = 0 and f2 = 0, so f1f2 = 0. Even then, we can use the first three

equations. So by comparing the coefficient of equation (2.1), we can have

three consistent quadratic equations for each S-Box.

More quadratic equations per S-Box can be extracted from the following

relations [21]:

f 2
1 f2 − f1 = 0, (2.2)

f1f
2
2 − f2 = 0. (2.3)

Equations (2.2) and (2.3) hold even in the case of 0−1. So 8 quadratic

equations can be found using these equations.

• The linear layer

Assume that the output bit variables of the non-linear layer (S-Boxes) are

z0, z1, . . . , z15, the round key variables are k0, k1, . . . , k15, and the input bit

variables of the next round are y0, y1, . . . , y15. The output of the non-linear

layer is going through a linear layer consisting of shift-row and mix-column

operations. Let that layer be L. So we can extract the linear equations of

the form

yi = Li(z0, z1, . . . , z15)⊕ ki, 0 ≤ i ≤ 15,

where Li denotes the i-th output bit line after the linear layer of the cipher.

• The Key Schedule

Equations for the round keys can be generated from the key-schedule

algorithm. From each round of baby Rijndael, we can construct 22

quadratic equations from the structure of the S-Box.

Null-space Equations

Assume that X = (x3, x2, x1, x0) is the input to an S-Box, and Y = (y3, y2, y1, y0)

is the output of that S-Box. To find the null-space equations, we build a 16× 37

matrix. Each row contains the values of the 37 monomials

1, x3, . . . , x0, y3, . . . , y0, x3x2, x3x1, . . . , x1x0, x3y3, x3y2, . . . , x0y0, y3y2, y3y1, . . . , y1y0

2.1 Algebraic Attack on AES-like Ciphers 11

for each of the 16 possible input values of x3, x2, x1, x0. We find the reduced

row echelon form of the matrix by Gaussian elimination, and then write all the

variables in terms of the free variables. From the null space, one gets 21 linearly

independent quadratic equations for each S-Box of baby Rijndael.

2.1.2 Solve the System of Equations

Solving the overdefined multivariate quadratic system of equations consists of

two parts. First, one expands the initial system of equations to generate more

linearly independent equations in order to get a system with full column rank

or close to full column rank. Second, the expanded system is solved by linear

system solvers.

The usual method to solve systems of algebraic equations is to use algorithms

based on Gröbner-basis computation. The fastest of such algorithms (like,

Faugère’s F4 and F5 [3, 4]), usually take exponential (or more) time in the size of

the system, and so are practically infeasible. The XL (eXtended Linearization)

algorithm have been proposed as an efficient alternative [6]. For a system of

m quadratic equations with n variables, the algorithm is expected to run in

polynomial time with an exponent O(1/
√
ǫ), if m ≥ ǫn2, 0 < ǫ ≤ 1/2.

eXtended Linearization (XL)

Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir [6]

introduce a new algorithm called XL (eXtended Linearization) for solving a

system of multivariate polynomial equations. The XL algorithm tries to benefit

from the fact that the number of equations exceeds the number of variables.

The main idea is to increase the number of initial equations by adding new

algebraically dependent equations, which are linearly independent of the initial

system. This system expansion is carried out using multiplications by monomials

of limited degrees. In [6] the authors provide some evidence, that XL can solve

randomly generated systems of polynomial equations in subexponential time

whenm (number of equations) exceeds n (number of unknowns) by a number that

12 Chapter 2 Literature Survey

increases slowly with n. However, now it is known that XL has an exponential

complexity [22, 23] in general.

The XL algorithm accepts as input the initial system of equations A (which

has at least one solution), and a degree bound D ∈ N. The steps of the algorithm

are described now.

Algorithm 1: Extended Linearization (XL) of multivariate systems

1. Multiply: Generate the new system B =
⋃

0≤k≤D−dmax

Xk
A, where Xk

stands for the set of all monomials of degree k, and dmax is the maximum

degree of the initial system.

2. Linearize: Consider each monomial in the variables xi of degree ≤ D as

a new variable, and perform Gaussian elimination on the system B. The

ordering of the monomials must be such that all the terms containing single

variables (like x1) are eliminated last.

3. Solve: Assume that Step 2 yields at least one univariate polynomial

equation in some variable x1. Find the roots of this equation in the

underlying finite field.

4. Repeat: Simplify the equations, and repeat the process to solve for the

other variables.

Structured Gaussian Elimination (SGE)

Structured Gaussian Elimination (SGE) is an algorithm used to reduce

the dimension of a sparse matrix by eliminating some of its rows and

columns [24, 16]. SGE exploits the special structure of the matrices arising

from integer-factorization and discrete-logarithm algorithms. The basic idea of

SGE is to declare some columns as heavy-weight, and to work only on preserving

the sparsity of the remaining light-weight columns. It is a heuristic procedure

that tends to preserve the sparsity of the light columns. The weight of a row

or column of a matrix is the number of non-zero entries in that row or column.

Initially we can identify a column as heavy-weight, if the weight of that column

is more than αm, for a predetermined small positive fraction α and total number

of rows m. According to [16] the best performance of SGE can be achieved when

2.2 A Survey on Algebraic Attacks 13

the linear system is sparse and most importantly there should be considerably

more equations than unknowns. The algorithm consists of sequence of steps as

follow.

Algorithm 2: Structured Gaussian Elimination (SGE)

1. Delete columns of weight 0 and 1.

2. Delete rows of weight 0 and 1.

3. Delete rows of weight 1 in the light part. After Step 2 and Step 3, update

column weights.

4. Delete redundant rows.

2.2 A Survey on Algebraic Attacks

In general, algebraic cryptanalysis of symmetric primitives is equivalent to MQ

problem. Although MQ problem is NP-Hard in nature, for overdefined MQ some

reasonable methods are known. They can be broadly classified into the following

categories.

• Algorithms based on Gröbner basis computations: These include F4 and

F5 algorithms [3, 4].

• Algorithms based on linearization: Kipnis and Shamir’s relinearization [5],

Courtois et al.’s eXtended Linearization (XL) [6], Courtois and Pieprzyk’s

eXtended Sparse Linearization [7] and Ding et al.’s MutantXL [8].

• Algorithms based on SAT solvers: Bard et al.’s algorithm [9]

Although superficially different, these approaches are occasionally proved to be

computationally equivalent. In the following part we give a brief survey of

some algorithms, that are used in algebraic cryptanalysis and also discuss some

practical attacks.

14 Chapter 2 Literature Survey

• Kipnis and Shamir [5] introduce a technique called relinearization to

solve system of multivariate polynomial equations. In the paper, the

authors cryptanalyze HFE public key cryptosystem by relinearization.

Relinearization is expected to run in polynomial time for a system of ǫm2

quadratic equations in m variables, for any constant ǫ > 0.

• In Eurocrypt 2000, Courtois et al. [6] show that many of the equations

generated by relinearization are linearly dependent. They propose a new

variant of linearization technique, namely eXtended Linearization (XL).

We have already discussed XL algorithm in 2.1.2. In the same paper

the authors propose a variant of XL called FXL (stands for Fixing and

XL). They observe that over a large field the smallest working degree

D (parameter of the XL algorithm) decreases dramatically when m − n

increases. So, in FXL they first fix µ variables, and then solve the resulting

system of m equations with n− µ variables using XL. The authors expect

the FXL algorithm to be sub-exponential, even when m = n. All the

simulations of XL have been done over GF (127) and with D < 127.

The authors give an approximate estimation of D, assuming most of the

equations are linearly independent in XL, as D ≥ n/
√
m.

• Courtois and Patarin [15] study the behavior of XL for system of quadratic

equations over GF (2). They have showed that use of the field equations

of GF (2) improves the performance of XL algorithm. In the same paper,

the authors introduce two variants of XL, namely XL′ and XL2. They

give an explanation for the linear dependencies that appear in the XL

algorithm, and derive a formula for the number of linearly independent

equations in XL or XL2. According to the paper, it is not clear whether

XL is asymptotically sub-exponential.

• Gröbner basis algorithms are one of the most popular and efficient

methods for solving polynomial system of equations. In 1965, Buchberger

introduces the notion of a Gröbner basis and also a criterion to test

whether a set of polynomials is a Gröbner basis. This criterion naturally

leads to Buchbergers algorithm for computing a Gröbner basis from

a given ideal basis. Worst case time complexity of this algorithm is

doubly exponential to the input size. Jean Charles Faugère proposes F4,

F5 [3, 4] algorithms as efficient alternatives of Buchberger algorithm. The

2.2 A Survey on Algebraic Attacks 15

worst case time complexity is exponential in these alternatives. Many

cryptosystems have been successfully cryptanalyzed using these Gröbner

basis algorithms [12, 13, 14].

• Courtois and Pieprzyk [7] introduce a variant of XL technique, eXtended

Sparse Linearization (XSL), for solving sparse system of multivariate

equations. The XSL method is based on the XL algorithm, but attempts

to use the sparsity and specific structure of the equations. Instead of

multiplying the equations by all monomials of degree ≤ D − 2 (supposing

that the original equations were quadratic), in the XSL algorithm the

equations are multiplied only by “carefully selected monomials” [7]. This

has the intention to create less new terms when generating the new

equations. According to [7], XSL seems to break Rijndael (AES) 256 bits

and Serpent for key lengths 192 and 256 bits. The analysis of XSL is not

straight forward, as the description of the algorithm leaves some room for

interpretation. However according to [25, 26], in the form presented in [7],

XSL cannot solve the system arising from the AES.

• Research has shown that XL and Gröbner basis algorithms are closely

related. In fact in [27], it is shown that the XL algorithm can be viewed as a

redundant version of F4 algorithm. For a system of quadratic polynomials,

when the number of equations is m = n + c (where, n is the number of

unknowns and c is a constant), then the minimum degree for XL to succeed

for a generic system is

D ≥ n/(
√
c− 1 + 1).

Since the number of monomials is
(

n

D

)

in the binary case, and
(

n+D

D

)

in the general case, this theorem implies that XL has an exponential

complexity [22, 23].

• Bard et al. [28] demonstrate the method of conversion of solving system of

equations over GF (2) into a CNF-SAT problem, and show the technique to

solve the problem using SAT-solver. They further claim that solving such

a CNF-SAT problem on a SAT-solver is faster than brute force for sparse

cases.

16 Chapter 2 Literature Survey

• Courtois and Bard [29] cryptanalyze 6 rounds of DES using only one single

known plaintext. They use two different techniques for solving the system

of equations. First they use an elimination algorithm ElimLin, which can

be seen as a very simplified version of known Gröbner basis algorithms. In

the second case, they simply convert the equations from ANF to CNF, and

solve the corresponding SAT problem using SAT-solver MiniSat 2.0. Using

the ElimLin algorithm the authors successfully cryptanalyze DES upto 5

round, using 3 known plaintexts and 23 variables fixed, in 173 seconds.

Brute force attack for the same would require 540 seconds. Using ANF to

CNF converter and SAT-solver MiniSat 2.0, the authors mount a successful

attack on 6 rounds of DES by fixing 20 key variables in 68 seconds, while

the exhaustive search would take about 4000 seconds. The authors try to

solve the same system of equations using MAGMA and Singular. Both the

tools crash with “out of memory“ message after allocating nearly 2 Gbytes

of memory. Whereas, the memory usage reported by MiniSat is 9 Mbytes.

• In [30], Courtois et al. present a slide-algebraic attack (on KeeLoq block

cipher), that use a SAT-solver, with the complexity equivalent to about

253 KeeLoq encryptions (with 216 known plaintexts). Using SAT-solver

MiniSat, without guessing any key variables, the key is computed in about

2 seconds.

• Courtois et al. [31] describe a full key recovery attack on Hitag2 stream

cipher. Hitag2 is a stream cipher widely used in RFID car locks in the

automobile industry. The algebraic immunity of the Hitag2 stream cipher

is very high (at least 4), which suggests that Hitag2 should be secure under

algebraic attack. The authors express the cipher as system of multivariate

low degree equations, convert that into a SAT problem, and use SAT-solver

MiniSat 2.0 to solve the system in feasible time.

• Ding et al. [8] use the concept of mutants to speed up the XL algorithm for

solving system of multivariate equations over finite fields. In this paper,

the authors propose the MutantXL algorithm. The authors compare the

performance of MutantXL with XL for HFE systems. They conclude that,

the MutantXL algorithm can indeed outperform the XL algorithm and can

solve multivariate systems at a lower degree than the usual XL algorithm.

2.2 A Survey on Algebraic Attacks 17

The authors suggest that the use of sparse linear algebra algorithms, such as

Wiedemann algorithm, can further improve the performance of MutantXL.

• Mohamed et al. [20] propose MXL2 algorithm as an improved variant

of MutantXL over GF (2) with significantly reduced memory usage.

The paper shows some experimental results comparing MXL2 with XL,

MutantXL and MAGMA’s implementation of F4. For that comparison

the authors have chosen small randomly generated instances of the MQ

problem and quadratic systems derived from HFE instances. The largest

matrices produced by MXL2 are substantially smaller than the ones

produced by MutantXL and XL. For significant number of cases, the

authors observe a reduction of size of the largest matrix when they compare

MXL2 against MAGMA’s F4 implementation.

• Mohamed et al. [32] describe an efficient attack on Multivariate Quadratic

Quasigroups (MQQ) public key cryptosystem by solving system of

multivariate quadratic polynomial equations, using a modified version of

the MutantXL algorithm. The authors successfully cryptanalyze MQQ

system of 160 bits using their MutantXL implementation. They compare

the results with MAGMA F4 attack to MQQ cryptosystems, which turn

out to be inefficient in terms of memory.

• Erickson et al. [33] explore algebraic attacks on SMS4 and SSMS4 (a toy

version of SMS4) using Gröbner basis attacks on equation systems over

GF (2) and GF (28), as well as attacks using a SAT-solver derived from the

GF (2) model. The results indicate that the MAGMA (used for Gröbner

basis attacks) is more effective than MiniSat for the full cipher, while

MiniSat outperform MAGMA in the simplified version of the cipher. The

authors were unable to break 6 round SMS4 in their setup.

• In [34], Albrecht et al. identify the relation between the MutantXL family

of algorithms and Gröbner basis algorithms. They claim that their

results map all novel concepts from the MutantXL family of algorithms

to their well-known Gröbner basis equivalents. In fact they conclude that

MutantXL family of algorithms can be fundamentally reduced to redundant

variants of F4.

18 Chapter 2 Literature Survey

The algorithms used for algebraic attacks are of exponential complexity. As

a result, they have very limited use in the cryptanalysis of real world ciphers,

given the large sizes of the system involved. The current algorithms can not

handle the equation systems obtained from full scale encryption algorithms

within reasonable time and resources. As a result, simplified toy versions are

considered and results for those reduced variants serve as a measure for the

performance of pure algebraic attack. In fact, no result is available in literature,

where a modern block cipher was broken using algebraic attacks faster than

with other techniques. Thus, improving algebraic attacks on block ciphers is

currently a very active area of research. In the next chapters, we will discuss some

techniques to improve existing linearization based algebraic attack techniques.

Chapter 3

A Heuristic Improvement of XL

In this chapter, we propose a new heuristic to improve the XL method by reducing

the size of the final linearized system. The heuristic uses the structured Gaussian

elimination (SGE) algorithm [16] to reduce the growth of the number of variables

during the expansion stage of XL. It also helps by decreasing the number of

linearly dependent equations. SGE sometimes exhibits excessive reduction in

the system size (a phenomenon called avalanche effect) which adversely affects

the application of SGE in tandem with XL. We control the avalanche effect by

tuning a heuristic parameter. Experiments carried out on small systems and

toy ciphers indicate that our heuristic holds the promise of bringing down the

complexity of XL substantially.

In short, the basic novelty of our work is the application of sparse

system-solving techniques in the expansion phase of the standard XL algorithm.

Two main improvements of the XL algorithm, already available in the literature,

are XSL [7] and MutantXL [8]. Both of these are capable of generating smaller

linearized systems compared to XL. However, neither of these seems to be

practical for solving real-life block ciphers like 128-bit AES. Our heuristic too

does not immediately lead to a practical cryptanalytic method for AES (or, for

that matter, for any other real-life cipher). It is instead proposed as another

improvement of XL with the hope that it may throw some insight in research

pertaining to algebraic attacks. Indeed, most of the current algebraic attack

techniques are essentially heuristic in nature, and many of them lack solid

19

20 Chapter 3 A Heuristic Improvement of XL

analytic foundations. Our method too seems promising only from the positive

results we obtained from our experimental experience with it.

The rest of the chapter is organized as follows. Section 3.1 provides a basic

idea of algebraic attacks over AES-like block ciphers. In particular, the XL

algorithm and structured Gaussian elimination procedure are discussed in brief.

In Section 3.2, we propose our algorithm XL SGE. Section 3.3 provides an

estimation of the degree bound in case of XL SGE. In Section 3.4, we supply

our experimental results, and compare the performance of XL SGE with that of

XL. We conclude the chapter in Section 3.5.

3.1 Background

Algebraic attack on AES-like block ciphers is equivalent to solving large systems

of multivariate quadratic equations over finite field (MQ problem). In general

this problem is NP-Complete. However, for overdefined system of equations

few reasonable methods are known. In order to mount algebraic attack on a

block cipher, one has to express the cipher as a system of multivariate quadratic

equations and then has to solve the system. Thus an algebraic attack consists of

two basic steps: (1) Equation generation, and (2) Solving the system of equations.

Usually, a block cipher consists of a linear part and a nonlinear part. The

nonlinear part is due to the presence of S-Boxes in the cipher. Constructing

equations for the linear part is trivial. To construct the equations for the

nonlinear part of the cipher, several methods are used. For our experiments, we

have used a scaled-down version of AES (baby Rijndael). Section 2.1.1, provides

a detailed description of equation generation from the structure of baby Rijndael.

To solve multivariate systems of equations, Gröbner-basis algorithms are usually

used. F4 and F5, proposed by Faugère [3, 4] are fastest algorithms to compute

Gröbner-basis. The XL (eXtended Linearization) algorithm is proposed as an

efficient alternative [6]. We have proposed some improvements over XL algorithm

using structured Gaussian elimination (SGE) algorithm. Detailed description of

XL and SGE can be found in 2.1.2 of Chapter 2.

3.2 eXtended Linearization with Structured Gaussian Elimination (XL SGE)21

3.2 eXtended Linearization with Structured

Gaussian Elimination (XL SGE)

3.2.1 Motivation

The problem with the XL algorithm is that the size of the system increases

drastically with the increase in the degree bound D used in the algorithm. Many

linearly dependent equations are generated during the expansion process (Step 1)

in XL. The equations generated by the XL algorithm are generally very sparse.

Moreover, we have observed, from the statistics of the system obtained in XL

(for D = 2), that the columns of the generated system can be distinguished as

heavy-weight and light-weight. Depending on these observations, we propose

a new heuristic (XL SGE) to reduce the number of linearized equations in XL.

According to the heuristic, the generated intermediate systems are reduced using

structured Gaussian elimination (SGE). The reduced systems are multiplied with

monomials to get systems of higher algebraic degrees.

The XL SGE algorithm reduces the sizes of the intermediate systems of

equations in XL using the first three steps of structured Gaussian elimination.

It does not use the apparently irrelevant fourth step of SGE. The main

motivation behind proposing XL SGE is size reduction. Besides this, XL SGE

is expected to exhibit some side effects, some of which can be exploited to our

advantage. For example, partial elimination of variables before each stage of

monomial multiplication may result in the generation of fewer linearized variables

(higher-degree monomials). This, in turn, is capable of reducing the rank deficit.

As a result, we may even expect a smaller degree bound D than XL for arriving

at a solvable system. One should, however, avoid the avalanche effect of SGE,

which results in a slow growth of the linearized system, demanding larger values

of D than needed in XL.

22 Chapter 3 A Heuristic Improvement of XL

3.2.2 XL SGE Algorithm

The XL SGE algorithm accepts as input the initial system of equations

(consisting of linear equations and quadratic equations) A (which has at least

one solution), a degree bound D ∈ N and a avalanche-control parameter K ∈ N.

The basic steps of the XL SGE expansion procedure are as follows.

Algorithm 3: XL with Structured Gaussian Elimination (XL SGE)

1. Expand the initial system A up to degree d = 2 using XL to obtain a

linearized system A
′. Make a copy of the linearized system A

′ as B.

2. Apply structured Gaussian elimination (SGE) on A
′ with avalanche-control

parameter K to obtain a reduced system of equations A′′ of degree d.

3. Multiply each equation in A
′′ by each monomial of degree 1 to get a system

A
′′′ of degree d+1. Append the equations of A′′′ to B. B now has equations

of degrees ≤ d+ 1. Rename A
′′′ as A′.

4. If the degree of the system of equations B is D, end the process. Otherwise,

go to Step 2 with d incremented by 1.

If we get a full-rank system (or a close-to-full-rank system) for a particular

D, we solve that system. Otherwise, we increase the degree bound D, and run

XL SGE again to obtain a system of smaller rank deficit. This process is repeated

until the rank deficit becomes zero or goes below a tolerable limit.

XL multiplies the initial system by all available monomials in one shot so

that the degrees of the freshly generated equations is no larger than D. Whereas

XL SGE replaces this by D − 2 stages of multiplications by the initial set of

variables. After every multiplication stage, the system is reduced by applying

SGE. This reduction controls the growth of the system in the linearization process

by eliminating some rows and columns and also by reducing the number of

equations generated in each subsequent multiplication stage.

We have observed that sometimes due to avalanche effect, most of the

equations are removed in the SGE stage. Consequently, XL SGE suffers from a

slow growth in the size of the linearized system with the increase in the degree

bound D, and the rank deficit in XL SGE decreases much more slowly with D

3.2 eXtended Linearization with Structured Gaussian Elimination (XL SGE)23

than in XL. To reduce this avalanche effect, we use the parameter K in Step 2

of the XL SGE algorithm. Suppose that the j-th column has weight 1 with the

non-zero entry appearing in the i-th row. Only if this row contains at least K

non-zero entries, the i-th row and the j-th column are removed. The value of K

is heuristically chosen depending upon the weight distribution of the rows. More

specifically, the i-th row and the j-th column are eliminated if and only if the

following three conditions are satisfied:

• The j-th column has weight 1.

• The (i, j)-th entry is non-zero (1, to be precise).

• The weight of the i-th row is at least K.

One important thing to note is that, we do not delete equations using SGE in

XL SGE. We deselect those equations from the future monomial multiplication.

In fact, the final system B already contains the equations removed by SGE at

any intermediate stage of the algorithm. However, those equations are not used

during the expansion stage. Let, x+y+z = 0 be an equation in an intermediate

system before applying SGE. The variable x has column-weight one and the

other two variables have column-weight greater than one. Using Step 1 of SGE,

XL SGE deselects the equation for future monomial multiplication assuming that

the solution of y and z can be found by expanding the reduced system only. Once

we get the solution of y and z, we can easily plug those solutions in the equation

x+ y + z = 0 (which is already in B) to find the solution for x.

An optional preprocessing of A offers a possibility of initial reduction in the

system size. As mentioned during the description of baby Rijndael, we get both

linear and quadratic equations from the encryption rounds. If we substitute the

linear equations in appropriate quadratic equations, we can eliminate some of

the variables, and remove all the linear equations from the initial system A. The

reduced system consisting only of quadratic equations is expanded. Although the

number of non-zero terms in each quadratic equation increases because of these

substitutions, the effects of this increase can be appropriately handled. However,

whether this initial reduction helps at all is not clear from our experiments.

24 Chapter 3 A Heuristic Improvement of XL

3.3 An Evaluation of XL SGE over GF (2)

We have experimented XL SGE for the system of multivariate quadratic

equations over GF (2). While applying XL SGE over GF (2) we always use

the fact xi
2 = xi. When we multiply the equations with monomials, we use

the equation xi
2 = xi to eliminate all powers of xi. Therefore over GF (2) the

number of monomials of degree k is exactly
(

n

k

)

[15], for a initial system with m

equations and n variables.

Now, let T be the total number of monomials upto degree D, R be the

total number of equations generated by XL. Then we have, T =
∑

D

λ=0

(

n

λ

)

and

R = m(
∑

D−2
λ=0

(

n

λ

)

). Let re number of equations and rv number of variables are

removed by XL SGE. If µ is the proportion of linearly independent equations

in XL SGE, then µ = Free/R − re, where Free is the number of linearly

independent equations. Then XL SGE algorithm will succeed when [R−re]×µ ≥
[T − rv], i.e. when,

[m(
D−2
∑

λ=0

(

n

λ

)

)− re]× µ ≥ [
D
∑

λ=0

(

n

λ

)

− rv].

Considering the main two terms of the summation:

[m

(

n+ 1

D − 2

)

− re]× µ ≥
(

n+ 1

D

)

− rv

m
(n+ 1)!

(D − 2)!(n−D + 3)!
× µ ≥ (n+ 1)!

D!(n−D + 1)!
+ (µre − rv)

Therefore we get:

mµ ≥ (n−D + 3)(n−D + 2)

D(D − 1)
+

(µre − rv)(D − 2)!(n−D + 3)!

(n+ 1)!

Now when n ≫ D, then (D−2)!(n−D+3)!
(n+1)!

≪ 1. We have observed that re >> rv in

all the cases, and if µ ≈ 1, then (µre− rv) is a small positive quantity. With this

assumption, we get an approximate evaluation of D in XL SGE as:

D &
n

√
µ
√
m
.

Which is same as D in case of XL over GF (2). So, for large n value of D is

expected to be same as in XL. Thus we get a speedup in case of XL SGE, in

3.4 Experimental Results 25

compare to XL, mainly due to the size reduction of the final system, not due

to reduction in degree of the final system. However, from this evaluation, it is

impossible to say anything about the amount of size reduction in XL SGE, which

actually governs the speed up of the algorithm. Empirically we have observed

that the performance of XL SGE depends on the structure of the initial system.

However, the exact nature of dependency is not very much clear yet. Also the

nature of dependency of the performance of XL SGE on the choice of the heuristic

parameter K remains as an open question.

3.4 Experimental Results

We have tried the heuristic (XL SGE) on small random sparse quadratic systems,

and have found that the heuristic significantly improves the performance of the

XL algorithm in most cases, in terms of the size of the final system. The results

obtained for some small random systems are shown in Table 3.1. This table

corresponds to K = 0, that is, the avalanche effect for SGE is not handled in

these experiments. The initial system size x× y indicates x quadratic equations

in y variables. On the other hand, the final system size m × n indicates m

linearized equations in n monomials. For both XL and XL SGE, we report the

final system size. In most of the cases, XL SGE produces full-rank systems. In

case of full-rank systems the complexity of the attack will be O(n2). In case of

a small rank deficit r, we can write the (n− r) variables in terms of r variables.

By guessing r variables over GF (2), we can find 2r solutions. In that case the

complexity of this attack will be 2r ×O(n2).

Notice that we apply SGE before each stage of monomial multiplication. This,

in turn, implies that the final systems in XL SGE, reported in all the tables

below, are again expected to reduce in size if another round of SGE is applied to

them. Indeed, it is a standard practice to apply SGE to any large sparse system

before solving it. The final systems available from XL would also experience

size reduction upon application of a round of SGE. For both XL and XL SGE,

the sizes reported in the tables correspond to those systems before that external

application of SGE which may be used to solve the systems.

26 Chapter 3 A Heuristic Improvement of XL

Table 3.1: Comparison of XL with XL SGE (with K = 0) for random systems

Size XL XL SGE

of A D Size of B δ D Size of B δ

10× 6 3 149× 42 0 3 67× 27 0

15× 8 3 276× 93 0 3 231× 87 0

20× 10 3 500× 172 0 3 427× 156 0

20× 10 5 7445× 638 0 6 3959× 655 0

20× 12 7 98611× 3302 0 7 2809× 917 11

20× 12 7 114863× 3302 0 7 5006× 1547 10

20× 12 3 795× 299 0 3 714× 271 0

22× 12 4 5464× 794 0 3 708× 209 0

22× 12 4 6478× 794 0 3 897× 263 0

24× 13 3 1137× 378 0 3 1029× 375 0

24× 14 5 44476× 3473 0 3 1085× 449 0

δ: rank deficit of the final linearized system B.

From the experimental results, it is clear that for the same degree bound

(D), the size of the final system obtained from XL SGE is in most cases much

smaller than the size of the final system obtained from XL. There are instances

where larger degree bounds D are needed by XL SGE (than XL) for obtaining a

full-rank system, but the size reduction is always a positive feature of XL SGE.

The performance of the XL SGE algorithm hugely depends on the structure of

the initial system of equations. We have observed that if the initial system of

equations enjoys the following two properties, XL SGE performs significantly

better than XL.

1. Number of equations ≫ Number of variables

2. Number of equations ≪ Number of one-degree terms + Number of

two-degree terms

There are cases where XL performs better than XL SGE. In some cases,

XL generates a full-rank system, whereas XL SGE fails to generate a full-rank

system. Consider the example of Row 5 of Table 3.1. In this case, we get a

full-rank system for D = 7 using XL. For the same D, the rank deficit in case of

XL SGE is 11. However, the size of the final system in case of XL is much larger,

3.4 Experimental Results 27

that is, a slightly increased rank deficit for XL SGE is more than compensated

by a dramatic reduction in the system size. Interestingly, for the same initial

system, we obtain a system of size 502 × 253 and rank deficit 2 using XL SGE

for D = 3 (for XL with D = 3, the system size is 639×296 with rank deficit 10).

The performance of XL SGE also depends on the proportion of linear

equations and quadratic equations present in the initial system. For some

systems, we get a full-rank system after few iterations of XL SGE (say, for

D = 3). So the size of the final system is small in those cases. For some other

systems of the same initial size, we get full-rank systems after more number of

iterations of XL SGE (say, for D = 6). In those cases, the size of the final system

is large. Consider the examples of Row 3 and Row 4 of Table 3.1. In both cases,

the sizes of the initial systems are the same. The initial system of the third row

contains 4 linear equations and 16 quadratic equations. The initial system of the

fourth row contains 2 linear equations and 18 quadratic equations. In the case

of Row 3, XL SGE gives a full-rank system of size 427× 156 for D = 3, whereas

for Row 4, we get a full-rank system of size 3959× 655 for D = 6.

The main problem with XL SGE is the avalanche effect suffered by the SGE

stage. If any intermediate generated system of XL SGE experiences avalanche

effect, no further increment in the size of the system is possible. In that case,

XL SGE fails to generate a full-rank system, no matter how large the degree

bound D is. In some cases, little reduction takes place (depends on the structure

of the initial system) with XL SGE. In those cases, the performances of XL SGE

and XL are similar.

Table 3.2 lists results on some small random systems with the avalanche

effect taken into account. For a given D, we have tuned the parameter K in the

sequence 0, 1, 2, . . . until we obtain a value of K for which the rank deficit of the

expanded system is zero. In all our experiments, we could locate suitable values

for K (although there is no theoretical guarantee that such a K must exist).

These results once again illustrate the superiority of XL SGE over XL in terms

of the size of the final solvable system.

Table 3.3 describes the variation of the performance of the XL SGE expansion

procedure with the parameter K for a random initial system of size 25 × 18.

28 Chapter 3 A Heuristic Improvement of XL

Table 3.2: Comparison of XL with XL SGE (with K ≥ 0) for random systems

Size XL XL SGE

of A D Size of B δ D K Size of B δ

22× 12 3 534× 298 0 3 4 513× 292 0

23× 13 5 11219× 2379 0 4 4 2863× 1073 0

24× 13 3 726× 377 0 3 0 726× 377 0

24× 15 4 6451× 1940 0 4 0 6400× 1940 0

24× 16 4 6587× 2516 0 4 7 6311× 2516 0

24× 16 3 2966× 696 0 3 0 1800× 696 0

25× 17 3 3916× 833 0 3 0 2246× 833 0

25× 18 4 55127× 4047 0 4 0 12496× 4045 0

25× 18 5 36825× 12615 0 5 6 34027× 12615 0

This is the same system reported in the last row of Table 3.2. In general, for

small values of K, the size reduction in SGE may be too high, that is, the

avalanche effect may set in. This may lead XL SGE to obtain higher rank deficits

compared to XL for the same degree bound D. On the other hand, if K is too

large, SGE fails to reduce the intermediate system sizes, and consequently, the

performance of XL SGE becomes identical to that of XL. A good value of K can

be experimentally chosen for a given input system.

Table 3.3: Dependence of the performance of XL SGE on the parameter K

K D = 3 D = 4 D = 5

System Size δ System Size δ System Size δ

0 922× 975 271 6015× 4047 294 28070× 12615 131

5 958× 976 244 6357× 4047 132 30043× 12615 38

6 1032× 982 192 7043× 4047 19 34027× 12615 0

8 1050× 983 179 7214× 4047 10 35014× 12615 0

10 1086× 987 154 7556× 4047 4 36988× 12615 0

Depending on the initial structure of the system, some modifications of the

XL SGE algorithm may improve the performance of the algorithm. The exact

nature of this dependence is not clear yet. To see whether XL SGE works well on

the systems generated by AES-like block ciphers, we have generated systems of

3.5 Conclusion 29

equations for the toy version of AES (Baby Rijndael) as described in Section 2.1.

On this system, XL SGE exhibits better performance than XL. The results are

shown in Table 3.4.

Table 3.4: Comparison of XL with XL SGE for baby Rijndael for D = 3

Number Size XL XL SGE

of rounds of A Size of B δ K Size of B δ

1 232× 64 178892× 43745 0 0 142945× 43745 0

2 448× 112 853358× 234225 48 3 634810× 233633 24

3 664× 160 2359598× 682401 576 7 1755432× 682273 576

4 890× 208 2594060× 1498713 96936 3 2571848× 1476481 93172

We have also reduced the initial system (according to the last paragraph of

Section 3.2) of baby Rijndael for one round, and get a system of 192 quadratic

equations in 24 variables. After expanding that system using XL SGE, we get

a final system of size 97447 × 12919 for D = 4 with rank deficit 36. On the

other hand, XL gives a final system of size 97943×12919 with rank deficit 36 for

the same D. It, therefore, remains uncertain whether the preprocessing of the

initial system (that is, absorbing the linear equations in the quadratic equations)

produces any noticeable benefits at all.

The programs for generating equations and expanding equations using XL

and XL SGE are written in the C programming language. The PARI/GP

package is used to carry out some intermediate calculations needed to generate

equations. The mathematical package Sage (Version 4.4.2) is used to calculate

the rank of sparse matrices available from XL and XL SGE.

3.5 Conclusion

The main problem with algebraic attacks on block ciphers is that the solvable

system size becomes large, and so the complexity to solve the system often

exceeds the complexity of brute-force search. In order to reduce the system

size in XL we propose XL SGE. XL SGE uses structured Gaussian elimination

30 Chapter 3 A Heuristic Improvement of XL

to improve the performance of XL by reducing the growth of variables and

of linearly dependent equations in the expansion stage of the XL algorithm.

Experimentation on small random systems and a toy version of AES indicates

that XL SGE has the potential to improve the performance of the XL in terms

of the size of the final solvable system.

Chapter 4

Improvements of XL SGE

In the previous chapter, we have proposed the XL SGE algorithm to improve

the complexity of XL attack by using structured Gaussian elimination (SGE)

during the expansion phase of XL. In this chapter, we establish that XL SGE

suffers from some serious drawbacks that impair the effectiveness of SGE-based

reduction at all multiplication stages except the first. In order to avoid this

problem, we propose two improvements of XL SGE. In the rest of the chapter,

Section 4.2 identifies the weaknesses of XL SGE. In Section 4.3, we propose

two different ways of repairing these drawbacks of XL SGE. Our experimental

results and associated remarks follow in Section 4.4. The concluding Section 4.5

highlights some scopes for further research in this direction.

4.1 Introduction

The XL SGE algorithm uses a heuristic to improve the performance of the XL

method by reducing the size of the final linearized system. It uses structured

Gaussian elimination (SGE) [16] to reduce the growth of the number of variables

during the expansion stage of XL. It also helps by decreasing the number

of linearly dependent equations. But in many cases, the reduction in the

system size obtained by XL SGE is not significant. We identify some sources

of ineffectiveness of XL SGE, and propose improvements to overcome these

shortcomings of XL SGE. These improvements make use of two novel techniques.

31

32 Chapter 4 Improvements of XL SGE

First, random monomial multiplications are used during the multiplication stage

of XL SGE. Second, variables with column weight two are considered in the

SGE stage of the algorithm. Experiments carried out on small systems and toy

ciphers indicate that our modifications bring down the complexity of XL SGE

substantially.

4.2 Problem of XL SGE

XL SGE is designed to reduce the size of the final solvable system in comparison

with XL. However, there are many instances where this size reduction is not

substantial. There are even situations where an application of SGE increases

(though only slightly) the number of equations compared to XL. Thus, the basic

goal of arriving at reduced systems is often not achieved by XL SGE.

XL SGE adopts a layer-wise multiplication strategy. At the d-th layer, we

have a system A
′ of maximum (algebraic) degree d. First, SGE is applied on

A
′ to get a reduced system A

′′ of the same degree d. Then, A′′ is multiplied

by monomials of degree 1 (variables) to get a system (renamed again as A
′) of

degree d + 1. This is repeated until the degree of the equations in A
′ reaches a

predetermined bound D.

Our experiments reveal that SGE on A
′ for d = 2 yields sizable reduction in

the system size. Subsequently, for d ≥ 3, SGE progressively loses effectiveness in

bringing down the system size. From the column-weight distribution, we observe

that for d = 2, A′ contains many columns of weight 1. For d ≥ 3, such columns

are rare in A
′, so Step 1 in SGE is executed for only a few number of times.

These experimental observations can be justified intuitively. After the initial

expansion for d = 2 using XL, A′ is expected to contain many variables with

column weight one. After SGE reduces this system, all columns that remain are

of weights at least two. The subsequent monomial-multiplication stage generates

new variables each expected to be of column weight at least two. Consider a

variable x in the system of equations after the last application of SGE. The

column weight of x is at least two at this point, that is, x appears in at least

two equations. Let y be a monomial of degree 1. If the system of equations is

4.2 Problem of XL SGE 33

multiplied by the monomial y, then x is multiplied by y at least twice, so the

column weight of the new variable xy will be at least two. There may, however,

be some cancellation of terms (after algebraic simplification using a2 = a for any

initial variable a and z + z = 0 for any linearized variable z). If there are many

initial variables, this phenomenon does not occur frequently.

While applying SGE for d ≥ 3, only Step 3 of Algorithm 2 can create

new columns of weight 1 (or 0) by deleting certain rows. Since monomial

multiplication increases the size of the system, some previously heavy columns

may turn light after monomial multiplication, potentially creating new avenues

for row deletion in Step 3. Step 2 of Algorithm 2 is quite ineffective, since

the previous round of SGE leaves no rows of weight 0 or 1, and monomial

multiplication does not reduce row weights except in rather infrequent situations

(like multiplication of x1x2 + x2 by x1 in an equation).

As an example, let a, b, c, d be GF (2)-valued variables. Suppose that an

intermediate application of SGE leaves us with the following linearized system

of equations of algebraic degree three. The linearized variables in the system are

a, b, d, abc, bc, and ad each with column weight at least two.

abc+ bc + a = 0 (4.1)

abc+ bc + b+ d = 1 (4.2)

abc + ad + b = 1 (4.3)

ad+ a + d = 0 (4.4)

To generate a system for the next degree four, XL SGE multiplies the system

with the variables a, b, c, d. This yields the following system with 15 equations

34 Chapter 4 Improvements of XL SGE

and 14 variables. Eqn (4.5) is generated twice (Eqn (4.1) × a and Eqn(4.4) × a),

but is shown only once.

a = 0 (4.5)

ab + ad + a = 0 (4.6)

abc + ab + ad + a = 0 (4.7)

abc + ab + bc = 0 (4.8)

abc + bc+ bd = 0 (4.9)

abc+ abd = 0 (4.10)

abd + ab + bd = 0 (4.11)

abc + ac + bc = 0 (4.12)

abc + cd + c = 0 (4.13)

abc + acd + bc + c = 0 (4.14)

acd + ac + cd = 0 (4.15)

abcd + bcd + ad = 0 (4.16)

abcd + bcd + bd = 0 (4.17)

abcd + ad + bd + d = 0 (4.18)

d = 0 (4.19)

The monomial abc appears thrice in the system (4.1)–(4.4). Multiplication

of these equations by d generates three occurrences of abcd in the expanded

system (4.5)–(4.19). The monomial bd appears in the expanded system four

times, twice from multiplying the term b in Eqns (4.2) and (4.3) by d, and twice

from multiplying the term d in Eqns (4.2) and (4.4) by b. There is also a case of

cancellation arising out of algebraic simplification. For example, ad appears twice

in the system (4.1)–(4.4). Multiplying Eqn (4.3) by d leaves the term ad, but

multiplying Eqn (4.4) by d removes this term. Unfortunately, however, the term

ad appears from other sources too. For example, Eqn (4.1) × d and Eqn (4.2) × a

give Eqns (4.16) and (4.6) respectively, each containing the non-zero term ad.

To sum up, all the monomials appearing in the expanded system (4.5)–(4.19)

happen to have column weights two or more. When SGE is applied to this

expanded system, no variable and equation can be removed by Step 1 of SGE.

4.3 Improvements of XL SGE 35

4.3 Improvements of XL SGE

To ensure reduction of system sizes by SGE for all degrees of A′, two possibilities

can be explored. First, we investigate how variables of column weight one may

reappear in the system. Second, we look into modifying SGE to work even when

all variables have column weights two or more.

• Partial monomial multiplication: Suppose that a variable x appears in

two or more equations. When both these equations are multiplied by the

same monomial y of degree one, the common variable xy appears in both

the new equations. If one of these multiplications is skipped, the number of

occurrences of xy (that is, its column weight) reduces by one. For example,

consider the expansion of the system (4.1)–(4.4) to generate the system

(4.5)–(4.19). The term abd appears in both Eqns (4.10) and (4.11) upon

multiplication of ad in Eqns (4.3) and (4.4) by b. If we skip the second

multiplication, we no longer generate Eqn (4.11), so abd occurs with column

weight one. Similarly, if we avoid the multiplication of Eqn (4.4) by c (so

that Eqn (4.15) is not generated), we reduce the column weights of both ac

and cd. Note that ac occurs in Eqn (4.12) and (4.15) from the common term

a in Eqns (4.1) and (4.4), whereas cd occurs in Eqns (4.13) and (4.15) from

the common term d in Eqns (4.2) and (4.4). Therefore, skipping a single

multiplication leaves both ac and cd with column weight one. Finally, the

variable ad occurs in four equations of the expanded system, so skipping

only one of the four multiplications yielding this variable cannot bring down

the column weight of ad to one.

The above discussion highlights that carefully skipping certain monomial

multiplications has some benefits. First, fewer equations are generated,

and second, SGE may again discover variables of column weight one. On

the darker side, generation of fewer equations may adversely affect the rank

profile (In terms of rank deficit) of the expanded system. If, however, too

many monomial multiplications are not skipped, we hope not to encounter

a big trouble with the rank profile. Therefore, two important issues are

of relevance in this context: which monomial multiplications would be

skipped, and how many.

36 Chapter 4 Improvements of XL SGE

• Deletion of variables with weight more than one: Suppose that a

variable z appears in t ≥ 2 equations in an expanded system. If we add one

of these equations to the remaining t−1 equations, the column weight of z

reduces to one, so SGE (Algorithm 2) can remove this variable in Step 1.

This, however, increases the weight of these t− 1 equations. This increase

in row weights may increase weights of certain columns. That is, an effort

to forcibly eliminate z may stand in the way of the elimination of other

variables. However, if t = 2, this processing of z followed by the removal

of the only equation containing z, does not increase the total weight of

the system. Still, the density (average weight per row or column) of the

system increases (since one equation and one variable are now removed),

but the expanded systems, particularly if large, are expected to absorb this

problem without sufficient degradation of the performance of XL SGE.

Our modifications of XL SGE following these two ideas are now elaborated.

4.3.1 XL SGE with Random Monomial Multiplication

(XL SGE-2)

As a first attempt, we skip monomial multiplications randomly, and the amount

of skipping is governed by a probability p ∈ (0, 1]. More precisely, each equation

is multiplied by each monomial of degree one with probability p (and skipped

with probability 1 − p). If p = 1, we have the original XL SGE algorithm. For

p < 1, we expect more size reduction compared to XL SGE.

The modified algorithm XL SGE-2 accepts as input the initial system of

equations A, a degree bound D ∈ N, the avalanche-control parameter K ∈ N,

and a multiplication probability p ∈ (0, 1]. The steps of XL SGE-2 follow.

Algorithm 4: XL SGE with Random Monomial Multiplication (XL SGE-2)

1. Expand the initial system A up to degree d = 2 using XL to obtain a

linearized system A
′. Make a copy of the linearized system A

′ as B.

2. Apply structured Gaussian elimination (SGE) on A
′ with avalanche-control

parameter K to obtain a reduced system of equations A′′ of degree d.

4.3 Improvements of XL SGE 37

3. Multiply each equation in A
′′ by each monomial of degree 1 with probability

p (that is, with probability 1 − p, a multiplication is skipped) to obtain a

system A
′′′ of degree d + 1. Append the equations of A′′′ to B. B now

contains equations of degrees up to d+ 1. Rename the system A
′′′ as A′.

4. If the degree of the system of equations B is D, end the process. Otherwise,

go to Step 2 with d incremented by 1.

If we get a full-rank system (or a close-to-full-rank system) for a particular

D, we solve that system. Otherwise, we increase the degree bound D, and run

XL SGE-2 again to obtain a system with smaller rank deficit. This process is

repeated until the rank deficit becomes zero or goes below a tolerable limit.

The multiplication probability p has been heuristically chosen in our

experiments. We have worked with several fixed values of p in different layers

(degrees d of A′). From our experimental experiences, we recommend values

of p ≥ 0.5. A slight modification in the above algorithm for XL SGE-2 is also

studied. In this variant, monomial multiplications are randomly skipped even in

Step 1 (that is, since the very beginning of the expansion process).

Another possibility is to use different probabilities in different layers of

multiplication. We study two models for varying p with the degree d of A
′.

In the first model, we take p1 = 1 − 1
d+1

, that is, the probability of monomial

multiplication gradually increases with the degree d of the expanded system. The

motivation behind this choice is that we initially restrict the expansion of the

system. If this initial restriction allows us to arrive at a solvable system quickly,

we are done. If, on the other hand, the initial restriction leads to large rank

deficits, we progressively remove the restriction on the growth of the system.

Note that this model can be applied even to Step 1 of XL SGE-2 (for d = 1).

In the second model, we take the gradually decreasing sequence of

probabilities p2 = D−d

D−d+1
. Initially, the system size is small, so we can afford

the system to grow at this stage. As d increases, A′ becomes increasingly large,

and restricting the growth of the system gradually controls the eventual growth

of the system. Note also that higher-degree monomials appear in the linearized

system from a larger number of sources. For example, the lower-degree monomial

y1y2y3 may appear by multiplying y2y3 with y1 or by multiplying y1y3 with y2

38 Chapter 4 Improvements of XL SGE

or by multiplying y1y2 with y3. On the contrary, a higher-degree monomial

like y1y2 · · · y10 may appear in the system in ten different ways: by multiplying

y1y2 · · · y10/yi by yi for i = 1, 2, . . . , 10. So y1y2 · · · y10 having column weight one

requires more restriction at the expansion stage for d = 9 than y1y2y3 requires

at d = 2.

XL SGE fails to exploit Step 4 of the SGE algorithm. Our partial monomial

strategy is a possible way to address this issue in the sense that deleting some

rows is in effect equivalent to not generating the rows at all.

4.3.2 Column-weight Two Reduction

As discussed earlier, the original SGE procedure (Algorithm 2) can be modified

so as to remove columns of weights two or more. In order that the rank profile

of the expanded system does not deteriorate too much, we have experimented

with deletion of columns of weight two only. The modified SGE algorithm is

described below. The algorithm repeats Steps 1–4 until no further reduction

is possible. Notice that this strategy is independent of the partial monomial

multiplication strategy described above, and is applicable equally well to both

XL SGE and XL SGE-2. Moreover, this can be viewed as another approach to

effectively exploit Step 4 of the SGE algorithm.

Algorithm 5: SGE with Column-weight Two Reduction (SGE′)

1. Delete columns of weight 0 and 1.

2. Delete columns of weight 2: If a column has weight 2, delete one equation

corresponding to that variable. Substitute that equation in the other

equation, and delete the column.

3. Delete rows of weight 0 and 1.

4. Delete rows of weight 1 in the light part. After Steps 2–4, update column

weights.

Although this heuristic modification of SGE seems to be effective, in the

current form it does not work very well. One must not use Algorithm 5

to reduce the initial quadratic system (available after Step 1 of XL SGE or

4.4 Experimental Results and Discussion 39

XL SGE-2), since random systems at this stage exhibit the tendency of losing

all quadratic variables. Using the modified SGE for all d ≥ 3 sometimes show

good performance. But the general observation is that the system suffers from

drastic reduction in size (a form of avalanche effect) resulting in degraded rank

profile and demanding a large number of iterations (that is, large values of D).

It appears that the modified SGE procedure of Algorithm 5 should be skipped

for certain small values of d (in addition to d = 2). However, the exact range

of applicability of Algorithm 5 (that is, the minimum d from which it is safe to

use this algorithm) has not yet been experimentally or theoretically determined.

Such a study would require initial systems larger than what we have experimented

with.

Table 4.1: Performance of XL SGE-2

(Random monomial multiplication done in Step 1 of Algorithm 4)

Size XL XL SGE-2 ∗ XL SGE-2 †

of A D Size of B δ D K p Size of B δ D K Size of B δ

12× 7 4 317× 98 0 3 3 0.75 39× 35 0 3 3 35× 36 2

15× 10 3 388× 175 0 3 3 0.67 210× 169 0 3 6 182× 173 3

16× 10 4 1229× 385 0 4 3 0.67 686× 362 0 4 7 619× 385 1

16× 12 5 5232× 1585 0 5 7 0.67 4163× 1584 0 5 8 2693× 1557 4

17× 12 4 2074× 793 0 4 7 0.75 1506× 758 0 4 8 1086× 786 7

17× 13 5 8889× 2379 0 5 6 0.67 7543× 2378 0 5 7 5383× 2379 0

18× 13 4 2796× 1092 0 4 6 0.67 1954× 1091 0 4 8 1521× 1092 1

19× 14 4 4473× 1470 0 4 5 0.67 3375× 1470 0 4 8 2183× 1468 2

19× 15 3 1247× 575 1 3 4 0.67 841× 574 1 3 8 583× 572 3

20× 15 4 4640× 1940 0 4 8 0.67 3437× 1938 0 4 8 2463× 1928 16

20× 16 4 7092× 2516 0 4 7 0.67 4909× 2514 0 4 8 3526× 2511 0
∗ Smallest systems obtained among the choices p = 0.67, 0.75, 0.80 are reported.

† Fixed probability p = 0.50 is used.

δ: rank deficit of the final linearized system B.

4.4 Experimental Results and Discussion

We have experimented with XL SGE-2, the modified version of XL SGE, on

small random sparse multivariate quadratic systems, and have found that the

40 Chapter 4 Improvements of XL SGE

heuristic substantially improves the performance of the XL algorithm in terms of

the size of the final linearized system. Indeed, XL SGE-2 performs consistently

much better than XL SGE too. Even in those cases, where XL SGE fails to

improve upon XL, our modified algorithm XL SGE-2 produces positive results.

In fact, XL SGE-2 has been found to significantly improve XL in almost all

the experiments we have conducted. However, the column-weight two reduction

strategy works well only in a limited set of experiments. In general, this strategy

(XL SGE′) results in massive reductions in the system size, leading to failure in

generating the final solvable system.

The results obtained for some small random systems with XL SGE-2 are

shown in Table 4.1. Here, random monomial multiplication is used since Step 1

of Algorithm 4. Each row in the central columns of the table shows the

smallest system size obtained, where the minimum is taken over the three choices

0.67, 0.75 and 0.80 of the monomial-multiplication probability p. In the table, δ

represents the rank deficit of the final system. In most of the cases, we get the

smallest system for p = 0.67. However, the dependence of the final output on p

or on the structure of the initial system is not yet fully understood.

The results obtained for p = 0.50 are shown in the last four columns of

Table 4.1. In the case of p = 0.50, we usually get much smaller final systems

than produced by larger probabilities (like 0.67). But at the same time, p = 0.50

yields final systems with some positive (albeit small) rank deficits, whereas the

larger values of p leave no rank deficits in identical settings (like same values

of D). These experiments demonstrate the expected tradeoff between system

reduction and rank profile. If we use partial monomial multiplication since Step 1

of Algorithm 4, p = 0.67 appears to be the experimentally recommended choice.

The size of the final system also depends on the random seed chosen during

the execution of the algorithm. Different seeds correspond to different (random)

choices of monomial multiplication. It has been observed that for the same initial

system and the same p, different final systems can be obtained using different

seeds. The variations of the final system size on different seeds are shown in

Table 4.2 . Both the parts in the table correspond to the same initial system of

size 16× 10. For this system, XL gives a final solvable system of size 1229× 385

for D = 4. Table 4.2(a) shows the results obtained by XL SGE-2 for p = 0.67,

4.4 Experimental Results and Discussion 41

Table 4.2: Variation of the final system size in XL SGE-2 for some seed values

Size of B D K Seed δ Size of B D K Seed δ

674× 355 4 0 11056 0 518× 373 4 6 8252 4

747× 361 4 0 5356 0 518× 378 4 6 8637 9

964× 383 4 5 9065 0 536× 375 4 7 11395 5

966× 385 4 6 8517 0 543× 383 4 6 7581 3

968× 385 4 5 3438 0 583× 384 4 7 4067 3

983× 384 4 6 5120 0 619× 385 4 7 2596 1

(a) p = 0.67 (b) p = 0.50

Table 4.3: Performance of XL SGE-2

(Random monomial multiplication not done in Step 1 of Algorithm 4)

Size of XL XL SGE-2

A D Size of B δ D K p Size of B δ

12× 7 4 317× 98 0 3 3 0.50 29× 29 1

15× 10 3 388× 175 0 3 0 0.50 270× 175 0

16× 10 4 1229× 385 0 4 0 0.67 674× 355 0

16× 12 5 5232× 1585 0 5 7 0.67 4221× 1584 0

17× 12 4 2074× 793 0 4 8 0.50 1410× 791 0

17× 13 5 8889× 2379 0 5 6 0.50 6069× 2378 0

18× 13 4 2796× 1092 0 4 6 0.50 1714× 1092 0

19× 14 4 4473× 1470 0 4 5 0.50 3099× 1469 0

19× 15 3 1247× 575 1 3 0 0.67 1068× 575 1

20× 15 4 4640× 1940 0 4 8 0.50 3006× 1936 0

20× 16 4 7092× 2516 0 4 0 0.50 5002× 2514 0

42 Chapter 4 Improvements of XL SGE

and Table 4.2(b) shows the results obtained by XL SGE-2 for p = 0.50. For

p = 0.67, the variation in the number of equations in the final system is observed

to be within 50% of one another, whereas for p = 0.50, this variation is within

20% of one another. In all cases, however, we obtain noticeably smaller systems

compared to XL. The rank deficit exhibits the same essential behavior as in

Table 4.1, but the choice of monomial multiplications has some effect on this

rank deficit for p = 0.50. It, however, appears assuring that the variation

of the performance of XL SGE-2 on the seed is not annoyingly large, that is,

our strategy of random monomial multiplication is experimentally validated to

exhibit good performance in general.

Table 4.3 shows the results obtained by using randommonomial multiplication

only in Step 2 of Algorithm 4. In Step 1, all the multiplications are carried out.

Here, we have experimented with four different values 0.50, 0.67, 0.75 and 0.80 of

p. The Table shows the smallest system size obtained among these four choices

of p. XL SGE-2 works very well in most (more than 90%) of the cases. Even in

cases where XL works better than XL SGE, the modified XL SGE-2 outperforms

XL. In a few (less than 10%) experiments, however, XL SGE-2 exhibits poorer

behavior than XL in terms of the rank profile of the expanded systems.

The performance of XL SGE-2 is compared with the performance of XL

and XL SGE in Table 4.4. In the columns under XL SGE-2 in this table,

we have reported the best results obtained by XL SGE-2. Here, the best is

obtained among several choices of p, including the fixed values 0.50, 0.67, 0.75

and 0.80, and also including the variable probability sequences p1 = 1− 1
d+1

and

p2 = D−d

D−d+1
. If partial monomial multiplication is used after the d = 1 layer

(that is, all multiplications are done in Step 1 of Algorithm 4), a suffix d ≥ 2

is written against the probability. The general observation is that XL SGE

performs slightly better than XL in most cases, whereas XL SGE-2 performs

considerably better than the other two algorithms consistently in almost all cases.

Some positive results obtained by XL SGE with column-weight two reduction

(henceforth referred to as XL SGE′) are shown in Table 4.5. In some cases,

XL SGE′ works very well. In Row 2 of Table 4.5, XL SGE′ shows 60% reduction

in the number of equations and 51% reduction in the number of variables, in

comparison with XL. For the same initial system, XL produces the final solvable

4.4 Experimental Results and Discussion 43

Table 4.4: Comparison of performances of XL, XL SGE and XL SGE-2

Size of XL XL SGE XL SGE-2

A D Size of B δ D K Size of B δ D K p Size of B δ

12× 7 4 317× 98 0 3 0 44× 38 1 3 3 0.50d≥2 29× 29 1

13× 8 3 275× 92 0 3 0 295× 92 0 3 5 p1 115× 88 0

13× 9 3 273× 129 0 3 4 264× 129 0 3 4 0.50d≥2 178× 124 0

14× 10 3 322× 175 1 3 5 338× 173 1 3 6 0.67d≥2 266× 172 1

15× 10 3 388× 175 0 3 0 378× 175 0 3 4 p2 187× 171 0

16× 10 3 309× 175 0 3 3 276× 173 0 3 5 0.67d≥2 238× 173 0

16× 10 4 1229× 385 0 4 5 1207× 385 0 4 3 0.67 686× 362 0

16× 11 5 4450× 1023 0 5 6 4127× 866 0 5 7 p2 2960× 867 1

16× 12 5 5232× 1585 0 5 6 4565× 1583 2 5 7 p2 3947× 1581 0

17× 12 3 548× 298 0 3 4 548× 298 0 3 8 p2 394× 297 0

17× 12 4 1758× 793 0 4 7 1703× 793 0 4 7 p2 1160× 792 0

17× 12 4 1984× 792 0 4 7 2262× 792 0 4 7 (p2)d≥2 1474× 786 0

17× 12 4 2074× 793 0 4 0 2596× 793 0 4 7 0.75 1506× 758 0

17× 13 5 8889× 2379 0 5 4 12152× 2342 4 5 7 0.50 5383× 2379 0

18× 12 3 628× 298 0 3 0 614× 296 0 3 7 p1 330× 291 1

18× 13 4 2796× 1092 0 4 5 2429× 1092 1 4 8 0.50 1521× 1092 1

18× 14 4 3333× 1470 0 4 0 3310× 1470 0 4 8 0.50d≥2 2074× 1467 0

19× 13 4 2280× 1090 0 4 7 2277× 1089 0 4 7 p1 1630× 1075 1

19× 14 4 4154× 1470 0 4 4 4202× 1470 0 4 7 0.50d≥2 2775× 1469 0

19× 14 4 4473× 1470 0 4 0 4149× 1470 0 4 0 (p1)d≥2 2765× 1469 0

19× 14 4 4500× 1470 0 4 0 4750× 1470 0 4 5 0.50d≥2 3155× 1464 0

19× 15 3 1247× 575 1 3 0 1247× 575 1 3 0 (p1)d≥2 717× 575 1

20× 14 4 3212× 1470 0 4 5 2781× 1470 0 4 8 0.50d≥2 1845× 1470 0

20× 15 4 4640× 1940 0 4 8 4779× 1940 0 4 8 0.50d≥2 3006× 1936 0

20× 16 4 7092× 2516 0 4 0 7085× 2516 0 4 8 0.50 3526× 2511 0

21× 17 3 1737× 833 0 3 0 1730× 833 0 3 0 p2 875× 828 0

44 Chapter 4 Improvements of XL SGE

Table 4.5: Performance of XL SGE′ (XL SGE with column-weight 2 reduction)

Initial system size XL XL SGE with col-wt 2 reduction

D System Size δ D K System Size δ

15× 10 4 947× 385 0 4 5 854× 369 0

15× 11 5 3906× 1022 0 4 6 1572× 502 0

15× 11 4 1155× 559 2 4 6 1073× 491 4

17× 12 5 5549× 1505 0 5 7 6851× 1577 0

17× 13 6 19349× 4095 8 5 5 9630× 2278 1

18× 14 4 4088× 1470 0 4 5 3948× 1470 0

21× 17 5 29702× 9401 0 5 7 44234× 9380 4

22× 17 4 7388× 3213 0 4 6 6878× 3213 0

system for D = 5, whereas XL SGE′ gives the solvable system for D = 4. In

Row 5 of Table 4.5, XL SGE′ shows 50% reduction in the number of equations

and 44% reduction in the number of variables, in comparison with XL. More

interestingly, XL produces a system for D = 6 with rank deficit 8, whereas

XL SGE′ produces the final system for D = 5 with rank deficit 1 only. However,

there are many instances (not shown in Table 4.5), where XL SGE′ does not work

better than XL. In fact, in some of those cases, the performance of XL SGE′ is

even poorer than XL SGE.

We have not studied XL SGE-2 with column-weight two reduction. It is

perhaps not the case that XL SGE-2 is incompatible with the column-weight two

reduction strategy. However, the effectiveness of column-weight two reduction is

expected to show up for relatively large values of d. On the contrary, XL SGE-2

demonstrates superior performance compared to XL and XL SGE even for small

values of d. Since our experiments are typically restricted to the upper bound

D ≤ 5 of the degree of A
′, our experiments miss the opportunity to study

XL SGE-2′ in a proper setting.

As an example of more cryptographic flavor than random systems, we have

experimented with several versions of XL SGE on the initial system obtained

from four-round baby-Rijndael [18]. We have found that XL SGE-2 significantly

improves the performance of XL and XL SGE, both in terms of the size and

the rank deficit of the final system. The results obtained for four-round

4.5 Conclusion 45

Table 4.6: Performances of XL and variants of XL SGE for four-round

baby-Rijndael (D = 3)

Algorithm K p Final System Size Rank Deficit

XL 0 1 2594060× 1498713 96936

XL SGE 3 1 2571848× 1476481 93172

XL SGE-2 0 0.75d≥2 2276971× 1442363 89387

XL SGE′ 0 1 2556116× 1449153 81576

baby-Rijndael are shown in Table 4.6. In the table, XL SGE′ stands for XL SGE

with column-weight two reduction strategy. XL SGE′ too has been found to show

better performance than XL and XL SGE.

4.5 Conclusion

In this chapter, we suggest improved variants of our proposal XL SGE. The

variant XL SGE′ works very well in some cases. However, in the current

form, it fails to perform in most of the cases. More investigation is needed

in order to make XL SGE′ more versatile and effective. We have used random

monomial multiplication strategy in XL SGE-2, which significantly improve the

performance of XL algorithm in almost all the cases. A more intelligent partial

monomial multiplication strategy may exploit the structures of the intermediate

systems in a positive way. In the next chapter, we will discuss an intelligent

variant of XL SGE, which exploits the structures of the intermediate systems to

reduce the system size in a controlled way.

Chapter 5

XL SGE with Row Deletion

In the previous chapter, we have proposed some improved variants of XL SGE

based upon random monomial multiplication and handling of columns of weight

two. In this chapter, we are going to discuss an intelligent strategy, by

deleting redundant equations in a controlled manner, to improve the performance

of XL SGE. The rest of the chapter is organized as follows. Section 5.2

discusses XL SGE with redundant row deletion strategy. Section 5.3 shows our

experimental results and compare different variants of XL SGE algorithm with

XL. Section 5.4 concludes the chapter with the future scopes of research.

5.1 Introduction

In the previous chapter, we demonstrate the benefits of using partial monomial

multiplication with XL SGE. In XL SGE-2 we randomly skip some monomial

multiplications with some probability in order to facilitate application of SGE

in the next layer of the algorithm. Fewer multiplication also generates fewer

number of variables and reduce the system size even before the application

of SGE. Instead of blindly skipping certain multiplications, we can adopt a

more intelligent strategy. We first carry out all monomial multiplications.

Subsequently, by analyzing the column statistics of the expanded system, we

mark some equations as less important than the others. We delete the less

important equations from the system and then perform SGE before the next

47

48 Chapter 5 XL SGE with Row Deletion

stage of multiplication. This variant, henceforth referred to as XL SGE-3, has

one potential advantage over XL SGE-2. Now, we have a better control over

the initial reduction in the system size in the sense that the degradation of the

rank profile can be carefully handled, if not eliminated altogether. Moreover,

the subsequent application of SGE is expected to be more effective in XL SGE-3

than in XL SGE-2.

5.2 XL SGE with Row Deletion (XL SGE-3)

The algorithm XL SGE-3 in general accepts as input the initial system of

equations A, a degree bound D ∈ N, the avalanche-control parameter K ∈ N.

The steps of XL SGE-2 follow.

Algorithm 6: XL SGE with Row Deletion (XL SGE-3)

1. Expand the initial system A up to degree d = 2 using XL to obtain a

linearized system A
′. Make a copy of the linearized system A

′ as B.

2. Apply structured Gaussian elimination (SGE) with avalanche-control

parameter K on A
′ to obtain a reduced system A

′′ of degree d.

3. Multiply the reduced system A
′′ with monomials of degree 1 and linearize

the system to obtain a system A
′′′ of degree d+ 1.

4. Identify and delete some rows of A′′′. Append the equations of A′′′ to B. B

now contains equations of degrees up to d+ 1. Rename A
′′′ as A′.

5. If the degree of the system of equations B is D, end the process. Otherwise,

go to step 2 after incrementing d by 1

Depending upon how we identify the redundant rows for deletion in Step 4,

we have different variants of XL SGE-3, some of which are elaborated below. The

deletion of redundant equations can also be employed after Step 1 of Algorithm 6.

5.2 XL SGE with Row Deletion (XL SGE-3) 49

5.2.1 XL SGE-3 with Deterministic Deletion (XL SGE-3d)

We have experimented with some deterministic deletion strategies in Step 4 of

Algorithm 6. We have considered only the variables of column weight two.

Among the two equations containing a variable with column weight two, we

delete (at most) one equation depending upon one of the following strategies.

Strategy 1

• If any of these two equations contains a variable with column weight

one, then skip the deletion of both the equations. (In this case, the

equation with the variable with column weight one is anyway deleted

by SGE, thereby reducing the weight of the variable with column

weight two.)

• Otherwise, delete the equation with the larger row weight. If both the

equations have the same row weight, delete any one of these arbitrarily.

Strategy 2

• If any of these two equations contains a variable with column weight

one, then skip the deletion of both the equations.

• If both the equations have the same right side (0 or 1), delete the

equation with the larger row weight. Make arbitrary choices to break

ties.

• If exactly one of the two equations has right side 1, then keep that

equation, and delete the other.

Strategy 3

• If any one of the equations contains a variable with column weight one,

then determine whether that variable can reappear in the system in a

future monomial-multiplication stage. If not, none of the equations is

deleted. Otherwise, delete the equation containing the variable with

column weight one.

• If both the equations contain variables of column weight one that can

reappear from a future monomial-multiplication stage, then delete one

of them depending on their row weights (as in Strategy 1).

50 Chapter 5 XL SGE with Row Deletion

• If both the equations contain no variables of column weight one, then

take decision as in Strategy 1.

Let z = x1x2x3 be a monomial with column weight one, and let the equation

containing z also contain a variable with column weight two. In Strategy 3, we

check whether z can reappear in the next multiplication layer (like multiplication

of x1x3 by x2). If that is the case, the current rank degradation incurred by the

deletion of the equation containing z will be repaired later.

5.2.2 XL SGE-3 with Random Deletion (XL SGE-3r)

Let z be a variable (monomial) with weight t. We delete m of the t equations

in which z appears. If the system is overdefined, this deletion is, in general, not

expected to have a bad effect on the rank profile. The details of this strategy are

given below. In our experiments, we have worked with t = 2 and 3, and m = 1.

• Find an equation with a variable of column weight t.

• If the equation contains a variable of column weight one, skip the deletion.

• Otherwise, delete the equation with probability pd.

• Repeat this process until there are no removable equations with variables

of column weight t.

5.3 Experimental Results

We have experimented with small random multivariate quadratic systems

and also with the initial system of size 890 × 208 obtained from four-round

baby-Rijndael.

The best performance of XL SGE-3 with different deletion strategies is

compared with the performance of XL and XL SGE in Tables 5.1 and 5.2. For

XL SGE-3r, we have used the fixed deletion probabilities pd = 0.50, 0.33, 0.25

5.4 Conclusion 51

Table 5.1: Comparison of performances of XL, XL SGE and XL SGE-3d

Size XL XL SGE XL SGE-3d

of A D Size of B δ D K Size of B δ D K Size of B δ

13× 9 3 233× 129 1 3 5 231× 129 1 3 5 158× 129 1

14× 11 4 2797× 561 0 4 0 2080× 561 0 4 4 1748× 561 0

15× 12 6 12831× 2509 0 6 7 6903× 1641 21 6 8 8002× 2509 3

17× 14 4 3242× 1470 0 4 7 3230× 1470 0 4 8 2798× 1470 1

18× 14 4 4541× 1470 0 3 0 900× 458 1 3 0 882× 456 1

19× 16 3 1282× 696 0 3 5 1282× 696 0 3 5 1172× 696 0

19× 16 3 1401× 696 0 3 0 1401× 696 0 3 0 1348× 696 1

20× 16 3 1420× 696 0 3 0 1400× 696 0 3 0 1365× 696 0

20× 17 4 7820× 3213 0 4 3 7514× 3213 0 4 7 7158× 3213 1

22× 19 5 53404× 16663 0 5 6 52944× 16663 0 5 6 48797× 16661 2

and 0.20. If deletion is used after Step 1 of Algorithm 6, we use the suffix d ≥ 2.

XL SGE-3 is evidently superior than XL and XL SGE. Moreover, XL SGE-3 has

been experimentally found (see Table 5.4) to have performance comparable with

XL SGE-2.

The performances of several variants of XL SGE on small random systems are

shown in Table 5.3. Table 5.4 shows that XL SGE-2 and XL SGE-3 significantly

improve the performance of XL and XL SGE, both in terms of the size and the

rank deficit of the final system in case of four round baby-Rijndael. In case of

small random multivariate quadratic systems XL SGE-3r performs significantly

better than that of XL SGE-3d. However, in case of four round baby-Rijndael

XL SGE-3d (for D = 3) produces smallest system with lowest rank deficit.

5.4 Conclusion

Redundant row deletion improves the performance of XL SGE. Specifically

random row deletion strategy performs significantly better than deterministic row

deletion strategies in case of small random multivariate quadratic systems. We

have observed that the performance of XL SGE-2 and XL SGE-3r are equivalent

almost in all the cases. However, an optimal identification of redundant equations

52 Chapter 5 XL SGE with Row Deletion

Table 5.2: Comparison of performances of XL, XL SGE and XL SGE-3r

Size XL XL SGE XL SGE-3r

of A D Size of B δ D K Size of B δ D K pd Size of B δ

15× 11 4 1463× 561 0 4 5 1326× 561 0 4 6 0.50d≥2 743× 560 0

15× 11 4 1580× 561 0 4 3 2152× 560 0 4 6 0.50d≥2 784× 560 0

16× 12 5 5242× 1585 0 5 7 5383× 1585 0 5 8 0.50d≥2 2387× 1585 1

17× 13 5 7653× 2379 0 5 7 8267× 2379 0 5 8 0.50d≥2 4182× 2379 0

19× 15 4 5324× 1940 0 4 0 5052× 1940 0 4 8 0.50d≥2 2673× 1940 0

20× 16 5 22658× 6884 0 5 0 21485× 6884 0 5 7 0.50 14746× 6884 0

22× 18 4 10277× 4047 0 4 3 9881× 4047 0 4 6 0.50 6992× 4047 0

22× 18 5 42721× 12615 0 5 3 44090× 12615 0 5 8 0.50d≥2 24432× 12615 0

23× 19 6 149801× 43795 0 6 7 127571× 43788 7 6 7 0.33 118274× 43764 3

23× 19 6 161823× 43795 0 6 8 144223× 43795 1 6 8 0.50 113284× 43795 1

Table 5.3: Performances of XL and variants of XL SGE for random systems

Size of B

Size of A XL XL SGE XL SGE-2 XL SGE-3d XL SGE-3r

15× 10 2712× 637 2528× 619 1447× 631 1939× 637 1360× 637

16× 11 2846× 561 2119× 561 943× 561 1322× 560 934× 561

17× 12 749× 298 748× 298 460× 298 714× 298 394× 298

18× 14 5347× 1470 4796× 1469 2199× 1461 4356× 1469 2462× 1469

19× 14 4831× 1470 3620× 1470 2333× 1468 3447× 1470 2414× 1470

20× 15 3783× 1940 3963× 1940 2907× 1940 3149× 1940 3073× 1940

20× 16 6402× 2516 6094× 2516 3700× 2514 5407× 2516 3994× 2516

23× 18 117996× 31179 122701× 31175 86200× 31175 112307× 31172 85227× 31179

Table 5.4: Performances of XL and variants of XL SGE for four-round

baby-Rijndael (D = 3)

Algorithm K p pd Size of B δ

XL 0 1 0 2594060× 1498713 96936

XL SGE 3 1 0 2571848× 1476481 93172

XL SGE-2 0 0.75d≥2 0 2276971× 1442363 89387

XL SGE′ 0 1 0 2556116× 1449153 81576

XL SGE-3d 0 1 0 1934149× 1163740 79630

XL SGE-3r 0 1 0.20 2355165× 1449152 85470

XL SGE-3r 0 1 0.25 2283125× 1449152 89640

5.4 Conclusion 53

remain as an open problem. A better selection criterion of redundant equations

may enhance the performance of XL SGE-3 furthermore.

Chapter 6

Conclusion

Algebraic cryptanalysis has received much attention recently from the community

of cryptographers. This is a totally different cryptanalytic approach compared

to the other statistical cryptanalysis techniques. Algebraic attacks exploit the

intrinsic algebraic structure of the cipher. In these attacks, one describes the

encryption operation as a large set of multivariate polynomial equations, which

once solved can be used to recover the secret key. Thus the difficulty of solving

large multivariate polynomial system of equations arising from a cipher is directly

related to the security of the cipher. In principle, algebraic attacks are applicable

to both stream ciphers and block ciphers. However, they have been much more

effective in the analysis of stream ciphers than that of block ciphers. The problem

in case of block ciphers is that the system size becomes unmanageably large, and

consequently complexity of solving such system often exceeds the complexity of

brute-force search. In this thesis, we have proposed several improvements upon

the XL family of algebraic attacks.

6.1 Summary of Work Done

XL generates too many linearly dependent equations while expanding the initial

system of equations. The number of variables also grows rapidly during the

expansion stage of XL. Our proposed heuristic XL SGE uses structured Gaussian

elimination in order to improve the performance of XL by reducing the growth

55

56 Chapter 6 Conclusion

of variables and of linearly dependent equations in the expansion stage of the XL

algorithm. Experiments reveal that XL SGE performs better than XL in many

cases for random systems and also for a toy version of AES.

XL SGE is designed to reduce the size of the final solvable system in

comparison with XL. However, there are many instances where this size reduction

is not substantial. We identify the problems in XL SGE and propose three

variants of XL SGE, based upon partial monomial multiplication (XL SGE-2),

handling of columns of weight two (XL SGE′) and deletion of redundant

equations (XL SGE-3). Depending on the deletion criterion (whether random

or deterministic), we propose XL SGE-3r and XL SGE-3d as two variants of

XL SGE-3. Our modified algorithms have been experimentally verified to be

superior to XL SGE and also these variants of XL SGE (specifically XL SGE-2

and XL SGE-3r) significantly improve the performance of XL algorithm.

6.2 Directions of Future Research

We end this thesis after highlighting some directions for future research.

• It is not yet clear on which factors the performance of XL SGE depends.

A theoretical analysis of XL SGE family is required, and accordingly

modifications of our present algorithm are called for to make it more

versatile and effective. As an example, the nature of dependency of the

performance of XL SGE on the choice of the heuristic parameter K needs

to be analytically investigated.

• We have demonstrated how partial monomial multiplication may improve

the performance of XL and XL SGE. So far, XL SGE-2 uses only random

monomial multiplication. A more intelligent partial-multiplication strategy

may exploit the structures of the intermediate linearized systems better

than a random strategy can.

• The dependence of the system size and rank profile on the seed

(multiplication or deletion decisions)—a property inevitably associated

6.2 Directions of Future Research 57

with randomized algorithms like XL SGE-2 and XL SGE-3r—should be

studied.

• An optimal choice for multiplication probability p (in XL SGE-2) and

deletion probability pd (in XL SGE-3r) requires more experimentation and

theoretical analysis.

• We have used some deletion criteria in XL SGE-3d and XL SGE-3r. A

different choice of selection criteria for redundant rows may enhance the

performance of XL SGE-3 furthermore. Finding an optimal (or close to

optimal) deletion criteria (without affecting the rank profile adversely) can

be an interesting problem to investigate.

• The domains of applicability of XL SGE′ need to be experimentally and

theoretically determined. Modifications of XL SGE′ may also be called for

to make the column-weight two reduction strategy useful in a variety of

situations.

• Another important area of investigation is to use SGE in conjunction

with the variants of linearization techniques (like XSL and MutantXL).

Comparisons with other algebraic-attack algorithms (like F4, F5, SAT-solver

techniques) are also worth studying.

Dissemination of Work

[1] Satrajit Ghosh and Abhijit Das, “An improvement of linearization-based

algebraic attacks,” Security Aspects in Information Technology, volumn 7011

of Lecture Notes in Computer Science, pages 157− 167, Springer, 2011.

[2] Satrajit Ghosh and Abhijit Das, “New variants of algebraic attacks based

on structured Gaussian elimination,” in Third international conference on

Symbolic Computation and Cryptography (SCC 2012), pages 119 − 125,

Castro Urdiales, Spain, July 2012.

59

Bibliography

[1] Michael R. Garey and David S. Johnson. Computers and Intractability; A

Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York,

NY, USA, 1990.

[2] Claude E. Shannon. Communication theory of secrecy systems. Bell System

Technical Journal, 28:657–715, 1949.

[3] Jean Charles Faugère. A new efficient algorithm for computing Gröbner

basis (F4), 2000.

[4] Jean Charles Faugère. A new efficient algorithm for computing Gröbner

basis without reduction to zero (F5). ISSAC ’02, pages 75–83, 2002.

[5] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE public key

cryptosystem by relinearization. In CRYPTO, pages 19–30, 1999.

[6] Nicolas T. Courtois, Alexander Klimov, Jacques Patarin, and Adi

Shamir. Efficient algorithms for solving overdefined systems of multivariate

polynomial equations. In EUROCRYPT, pages 392–407, 2000.

[7] Nicolas T. Courtois and Josef Pieprzyk. Cryptanalysis of block ciphers with

overdefined systems of equations. In ASIACRYPT, pages 267–287, 2002.

[8] J. Ding, J. Buchmann, M.S.E. Mohamed, W.S.A. Mohamed, and R.P.

Weinmann. MutantXL. In SCC, pages 16–22, 2008.

[9] Nicolas T. Courtois Gregory V. Bard and Chris Jefferson. Solution of sparse

polynomial systems over GF(2) via sat-solvers. In ECRYPT workshop Tools

for Cryptanalysis, 2007.

[10] Nicolas T. Courtois and Willi Meier. Algebraic attacks on stream ciphers

with linear feedback. In Proceedings of the 22nd international conference

61

62 BIBLIOGRAPHY

on Theory and applications of cryptographic techniques, EUROCRYPT’03,

pages 345–359. Springer-Verlag, 2003.

[11] Nicolas T. Courtois. Fast algebraic attacks on stream ciphers with linear

feedback. In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003,

volume 2729 of Lecture Notes in Computer Science, pages 176–194. Springer,

2003.

[12] Jean Charles Faugère, Françoise Levy dit Vehel, and Ludovic Perret.

Cryptanalysis of MinRank. In David Wagner, editor, Advances in Cryptology

CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages

280–296. Springer, 2008.

[13] Jean Charles Faugère and Antoine Joux. Algebraic cryptanalysis of hidden

field equation (HFE) cryptosystems using Gröbner bases. In Dan Boneh,

editor, Advances in Cryptology - CRYPTO 2003, volume 2729 of Lecture

Notes in Computer Science, pages 44–60. Springer, 2003.

[14] Jean Charles Faugère and Ludovic Perret. Cryptanalysis of 2R− schemes.

In Cynthia Dwork, editor, Advances in Cryptology - CRYPTO 2006, volume

4117 of Lecture Notes in Computer Science, pages 357–372. Springer Berlin,

2006.

[15] Nicolas T. Courtois and Jacques Patarin. About the XL algorithm over

GF(2). In Proceedings of the 2003 RSA conference on The cryptographers’

track, CT-RSA’03, pages 141–157. Springer-Verlag, 2003.

[16] B. LaMacchia and A. Odlyzko. Solving large sparse linear systems over

finite fields. In CRYPTO, pages 109–133. 1991.

[17] Joan Daemen and Vincent Rijmen. Rijndael for AES. In AES Candidate

Conference, pages 343–348, 2000.

[18] Elizabeth Kleiman. The XL and XSL attacks on baby Rijndael. Master’s

thesis, Iowa State University, Department of Mathematics, 2005.

[19] Martin Vörös. Algebraic attack on stream ciphers. Master’s thesis,

Comenius University, Faculty of Mathematics, Physics and Informatics,

Department of Computer Science, 2007.

BIBLIOGRAPHY 63

[20] Mohamed Mohamed, Wael Mohamed, Jintai Ding, and Johannes

Buchmann. MXL2: Solving polynomial equations over GF(2) using an

improved mutant strategy. In Johannes Buchmann and Jintai Ding, editors,

Post-Quantum Cryptography, volume 5299 of Lecture Notes in Computer

Science, pages 203–215. Springer, 2008.

[21] Ralf-Philipp Weinmann. Evaluating algebraic attacks on the AES.

Master’s thesis, Fachbereich Informatik, Fachgebiet Kryptographie und

Computeralgebra, Technische Universität Darmstadt, 2003.

[22] Bo yin Yang and Jiun ming Chen. Theoretical analysis of XL over small

fields. In In Proceedings of the 9th Australasian Conference on Information

Security and Privacy, pages 277–288. Springer, 2004.

[23] Claus Diem. The XL-algorithm and a conjecture from commutative algebra.

In Proceedings of Asiacrypt 2004, LNCS, volume 3329, pages 323–337.

Springer-Verlag, 2004.

[24] Abhijit Das. Computational Number Theory. manuscript of a book.

[25] Carlos Cid and Gaëtan Leurent. An analysis of the XSL algorithm. In Bimal

Roy, editor, Advances in Cryptology - ASIACRYPT 2005, volume 3788 of

Lecture Notes in Computer Science, pages 333–352. Springer, 2005.

[26] Chu-Wee Lim and Khoongming Khoo. An analysis of XSL applied to BES.

In Alex Biryukov, editor, Fast Software Encryption, volume 4593 of Lecture

Notes in Computer Science, pages 242–253. Springer, 2007.

[27] Gwénolé Ars, Jean Charles Faugère, Hideki Imai, Mitsuru Kawazoe, and

Makoto Sugita. Comparison between XL and Gröbner basis algorithms. In

ASIACRYPT 2004, Lecture, pages 338–353. Springer-Verlag, 2004.

[28] Nicolas T. Courtois Gregory V. Bard and Chris Jefferson. Efficient methods

for conversion and solution of sparse systems of low-degree multivariate

polynomials over GF(2) via SAT-solvers. Cryptology ePrint Archive, Report

2007/024, 2007.

[29] Nicolas T. Courtois and Gregory V. Bard. Algebraic cryptanalysis of the

Data Encryption Standard. In IMA Int. Conf., pages 152–169, 2007.

64 BIBLIOGRAPHY

[30] Nicolas T. Courtois, Gregory V. Bard, and David Wagner. Algebraic and

slide attacks on Keeloq. In FSE, pages 97–115, 2008.

[31] Nicolas T. Courtois, Sean O’Neil, and Jean-Jacques Quisquater. Practical

algebraic attacks on the Hitag2 stream cipher. In ISC, pages 167–176, 2009.

[32] Mohamed Saied Mohamed, Jintai Ding, Johannes Buchmann, and Fabian

Werner. Algebraic attack on the MQQ public key cryptosystem. In

Proceedings of the 8th International Conference on Cryptology and Network

Security, CANS ’09, pages 392–401. Springer-Verlag, 2009.

[33] Jeremy Erickson, Jintai Ding, and Chris Christensen. Algebraic

cryptanalysis of SMS4: gröbner basis attack and SAT attack compared.

In Proceedings of the 12th international conference on Information security

and cryptology, ICISC’09, pages 73–86. Springer-Verlag, 2010.

[34] Jean Charles Faugère Martin R. Albrecht, Carlos Cid and Ludovic Perret.

On the relation between the MXL family of algorithms and Gröbner basis

algorithms. J. Symb. Comput., 47(8):926–941, August 2012.

	Title Page
	Title Page
	Approval Page
	Certificate Page
	Declaration Page
	Acknowledgments
	Abstract
	Abstract
	Table of Contents
	List of Tables
	1 Introduction
	1.1 Overview and Motivation
	1.2 Contributions
	1.3 Thesis Organization

	2 Literature Survey
	2.1 Algebraic Attack on AES-like Ciphers
	2.1.1 Equation Generation
	2.1.2 Solve the System of Equations

	2.2 A Survey on Algebraic Attacks

	3 A Heuristic Improvement of XL
	3.1 Background
	3.2 eXtended Linearization with Structured Gaussian Elimination (XL_SGE)
	3.2.1 Motivation
	3.2.2 XL_SGE Algorithm

	3.3 An Evaluation of XL_SGE over GF(2)
	3.4 Experimental Results
	3.5 Conclusion

	4 Improvements of XL_SGE
	4.1 Introduction
	4.2 Problem of XL_SGE
	4.3 Improvements of XL_SGE
	4.3.1 XL_SGE with Random Monomial Multiplication (XL_SGE-2)
	4.3.2 Column-weight Two Reduction

	4.4 Experimental Results and Discussion
	4.5 Conclusion

	5 XL_SGE with Row Deletion
	5.1 Introduction
	5.2 XL_SGE with Row Deletion (XL_SGE-3)
	5.2.1 XL_SGE-3 with Deterministic Deletion (XL_SGE-3d)
	5.2.2 XL_SGE-3 with Random Deletion (XL_SGE-3r)

	5.3 Experimental Results
	5.4 Conclusion

	6 Conclusion
	6.1 Summary of Work Done
	6.2 Directions of Future Research

	Dissemination of Work
	Bibliography

